Browsing by Person "Preiss, Anette"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Beiträge zur Verbesserung der Analytik von Mutationen im Protoonkogen Kirsten-ras und epigenetische Untersuchungen zur Eignung von DUSP9/MKP4 als CIMP-Marker(2012) Jenner, Stefan; Preiss, AnetteThe present study extends over two different fields of applications, which contribute to improvements for the analysis of colorectal cancers. First, a ligase-based method was developed which allows a quick, inexpensive, specific and highly sensitive detection of point mutations in the mutation hot spot codon12 and codon13 of the K-ras gene. The establishment and validation of the technique was performed on clinical samples, which were present as FFPE tissues and gone through routine diagnostics using conventional molecular biological techniques (microarray analysis, Sanger Sequencing) to determine the K-ras mutation status. In addition, a comparison between the new developed technology and the conventional technologies should be performed. The evaluation of the gLCR approach was done by ABI310er capillary electrophoresis. Among the tested LCR variants the gLCR-monoplex had been the most robust, specific and sensitive technique. The presence of very weak mutations in the samples had been successfully confirmed by gLCR-monoplex, whereas several conventional techniques had to be applied together to detect the mutations unambiguously. The signal strengths for all tested samples were high, coming along with a low standard deviation. The superiority of gLCR-monoplex over the conventional techniques had been further highlighted impressively by performing a comparison of methods on a dilution series. While the mutation detection using Sanger Sequencing or microarray analysis had been successful only up to the 1:10-dilution, or 1:100-dilution, it was possible to detect the K-ras mutation by gLCR-technique up to the 1:1 million-dilution. In routine diagnostics a single monoplex reaction for each possible mutation has to be performed. Therefore the monoplex technique is only suitable as a confirmatory test of weak or doubtful mutation screening results, which had been previously indicated by conventional techniques. A multiplex approach would be desirable to use the gLCR technology as a main detection technique in routine diagnostics. Therefore a single discriminating base at the mutation-specific and color-labeled oligo probe appears to be insufficient. In future studies an additional mismatch should be integrated at position (-3), in relation to the 3'-end of the dye-labeled and mutation-specific oligo probe. In this way it could come to a significant reduction of false-positive signals, thereby gLCR technology could possibly be used as a multiplex approach. In the second part of the work the methylation status of the DUSP9/MKP4 promoter region had been evaluated. By methylation, the accessibility of the promoter, and thus the transcriptional activation of a gene can be reduced. The promoter regions of tumor suppressors are frequently strong methylated in colorectal cancer (CRC). The methylation is resulting in an increased tumorigenesis and cannot be observed in the corresponding normal tissues. This alteration is called CIMP (CpG-island-methylator-phenotype) and is an independent tumor phenotype, which is linked to other clinical aspects. Involved genes are classified as CIMP markers. The DUSP9/MKP4 gene product is a potent tumor suppressor, but it´s suitability as a marker for CIMP in CRC has not been studied so far. In this study, the degree of methylation of 79 colorectal cancer FFPE tissue samples and 22 corresponding normal FFPE tissues was determined quantitatively. A broad variation of methylation strength has been observed in the examined tumor tissues, ranging from nearly unmethylated to nearly completely methylated. Only minor differences between tumor and normal tissues had been detected for the 11 DNA samples with the lowest methylation strength. On the other side, there was a significant correlation with CRC for the 11 strongest methylated DNA samples. About 80% of the DNA from normal tissue showed clearly weaker methylation, leading to the conclusion, that an aberrant DNA methylation status is present in these tumor tissues. Additionally, 9 out of 11 strong methylated DNA samples showed CIMP criteria, which were completely missing at the weakly methylated DNA samples. This work represents, as far as published, the first study that reveals a difference in the methylation pattern of the DUSP9/MKP4 promoter from human colorectal carcinoma and their corresponding normal tissues. Strong methylation could be associated with all tested CIMP criteria. This relationship needs to be confirmed in further studies on a larger sample collective. In addition, the investigations should include the detection of microsatellite instabilities, as an additional CIMP-criterion, and a functional protein detection method should be established.Publication Novel genome-engineered H alleles differentially affect lateral inhibition and cell dichotomy processes during bristle organ development(2024) Mönch, Tanja C.; Smylla, Thomas K.; Brändle, Franziska; Preiss, Anette; Nagel, Anja C.Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, three new H alleles, HFA, HLLAA and HWA were generated and a phenotypic series was established by several parameters, reflecting the residual H-Su(H) binding capacity. Occasionally, homozygous HWA flies develop to adulthood. They were compared with the likewise semi-viable HNN allele affecting H-Su(H) nuclear entry. The H homozygotes were short-lived, sterile and flightless, yet showed largely normal expression of several mitochondrial genes. Typical for H mutants, both HWA and HNN homozygous alleles displayed strong defects in wing venation and mechano-sensory bristle development. Strikingly, however, HWA displayed only a loss of bristles, whereas bristle organs of HNN flies showed a complete shaft-to-socket transformation. Apparently, the impact of HWA is restricted to lateral inhibition, whereas that of HNN also affects the respective cell type specification. Notably, reduction in Su(H) gene dosage only suppressed the HNN bristle phenotype, but amplified that of HWA. We interpret these differences as to the role of H regarding Su(H) stability and availability.Publication Numerous Serine/Threonine kinases affect blood cell homeostasis in Drosophila melanogaster(2024) Deichsel, Sebastian; Gahr, Bernd M.; Mastel, Helena; Preiss, Anette; Nagel, Anja C.Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.