Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Rabeling, Christian"

Type the first few letters and click on the Browse button
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Global biogeography of ant social parasites: Exploring patterns and mechanisms of an inverse latitudinal diversity gradient
    (2022) Gray, Kyle W.; Rabeling, Christian
    Aim: One of the most consistent global biogeographic patterns is the latitudinal diversity gradient where species richness peaks within the equatorial tropics and decreases towards the poles. Here, we explore the global biogeography of socially parasitic ant species, which comprises the most diverse group of social parasites in the Hymenoptera. We test the biogeographic hypothesis that ant social parasites are distributed along an inverse latitudinal diversity gradient (iLDG) by peaking in diversity outside of the equatorial tropics, which would contrast with the biogeographic pattern observed in free-living, non-parasitic ant species. Location: Global. Taxon: Ants (Hymenoptera: Formicidae). Methods: We assembled a comprehensive biogeographic dataset consisting of 6001 geographic distribution records for all 371 taxonomically described socially parasitic ant species. We used phylogenetic and taxonomic studies to estimate the number of independent evolutionary origins of ant social parasitism to directly compare species richness with the number of species representing independent evolutionary origins of social parasitism across a latitudinal gradient. In addition, we compared ant social parasite diversity across biogeographic regions using rarefaction to account for different sampling efforts. Finally, we tested for a correlation between latitude and the proportion of ant social parasite species within regional ant faunae. Results: The geographic distribution records and the inferred 91 independent evolutionary origins of socially parasitic life histories in ants show that both species richness and the number of species representing independent evolutionary origins of social parasitism peak in the northern hemisphere outside of the equatorial tropics. Based on rarefaction curves, northern latitude regions harbour the most ant social parasite species, but the diversity of independent evolutionary origins is not significantly different between northern and southern hemispheres. The proportion of ant social parasite species within regional faunae is tightly correlated with latitude only in the northern hemisphere. Main conclusions: The iLDG of ant social parasites contrasts with the biogeographic pattern observed in free-living, non-parasitic ant species and appears to be driven by large species radiations as well as by the presence of specialized life histories exclusive to the northern hemisphere.
  • Loading...
    Thumbnail Image
    Publication
    Monomorium dine sp. nov. (Hymenoptera, Formicidae): a new inquiline social parasite ant species from North America
    (2025) Cover, Stefan P.; Rabeling, Christian
    Among the very rarest of Nearctic ants are three species of inquiline social parasites belonging to the genus Monomorium, namely Monomorium inquilinum DuBois, Monomorium pergandei (Emery), and Monomorium talbotae DuBois. All three species are known only from the type collections. Here, we describe Monomorium dine Cover & Rabeling, sp. nov., from the Navajo Nation in New Mexico, USA, a new species closely similar to the three known social parasites. Like them, M. dine appears to be a workerless inquiline that exploits a free-living Monomorium host. We also provide keys to the queens of the Nearctic Monomorium inquilines, provide the first images of these species, report new collections for Monomorium talbotae DuBois, discuss host-parasite associations, and summarize what is presently known about these mysterious social parasites.
  • Loading...
    Thumbnail Image
    Publication
    Phylogenomic approach to integrative taxonomy resolves a century‐old taxonomic puzzle and the evolutionary history of the Acromyrmex octospinosus species complex
    (2024) Mera‐Rodríguez, Daniela; Fernández‐Marín, Hermógenes; Rabeling, Christian
    Accurately delimiting species boundaries is essential for understanding biodiversity. Here, we assessed the taxonomy of the leaf‐cutting ants in the Acromyrmex octospinosus (Reich) species complex using an integrative approach incorporating morphological, population genetic, phylogenetic and biogeographical data. We sampled populations across the biogeographic distribution of the species complex and reconstructed their evolutionary relationships using ultraconserved elements (UCEs) as molecular markers. We evaluated traditional morphological characters used to distinguish putative taxa and performed species delimitation analyses to investigate divergence between evolutionary lineages. Our results support the hypothesis that the A. octospinosus species complex consists of two species: the widely distributed and polymorphic species A. octospinosus and its inquiline social parasite A. insinuator Schultz et al. We consider A. echinatior (Forel) syn. nov . and A. volcanus Wheeler syn. nov . as well as the subspecies A. octospinosus cubanus Wheeler syn. nov ., A. octospinosus ekchuah Wheeler syn. nov . and A. octospinosus inti Wheeler syn. nov . as junior synonyms of A. octospinosus . We also investigated the biogeographic history of the species complex and the evolutionary origin of the social parasite A. insinuator . We inferred that A. octospinosus originated during the late Miocene approximately 6.9 Ma ago in the Neotropical rainforest. Acromyrmex insinuator shared a common ancestor with A. octospinosus approximately 3.4 Ma ago, with a crown‐group age of approximately 0.9 Ma. Our phylogeny supports the hypothesis that the inquiline social parasite speciated via the intra‐specific route of social parasite evolution in direct sympatry from its host. Our findings reshape our understanding of the A. octospinosus species complex and provide a foundation for future studies of Acromyrmex leaf‐cutting ants.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy