Browsing by Person "Smylla, Thomas K."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Novel genome-engineered H alleles differentially affect lateral inhibition and cell dichotomy processes during bristle organ development(2024) Mönch, Tanja C.; Smylla, Thomas K.; Brändle, Franziska; Preiss, Anette; Nagel, Anja C.Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, three new H alleles, HFA, HLLAA and HWA were generated and a phenotypic series was established by several parameters, reflecting the residual H-Su(H) binding capacity. Occasionally, homozygous HWA flies develop to adulthood. They were compared with the likewise semi-viable HNN allele affecting H-Su(H) nuclear entry. The H homozygotes were short-lived, sterile and flightless, yet showed largely normal expression of several mitochondrial genes. Typical for H mutants, both HWA and HNN homozygous alleles displayed strong defects in wing venation and mechano-sensory bristle development. Strikingly, however, HWA displayed only a loss of bristles, whereas bristle organs of HNN flies showed a complete shaft-to-socket transformation. Apparently, the impact of HWA is restricted to lateral inhibition, whereas that of HNN also affects the respective cell type specification. Notably, reduction in Su(H) gene dosage only suppressed the HNN bristle phenotype, but amplified that of HWA. We interpret these differences as to the role of H regarding Su(H) stability and availability.Publication Phospholipase D and retromer promote recycling of TRPL ion channel via the endoplasmic reticulum(2021) Wagner, Krystina; Smylla, Thomas K.; Lampe, Marko; Krieg, Jana; Huber, ArminPlasma membrane protein trafficking is of fundamental importance for cell function and cell integrity of neurons and includes regulated protein recycling. In this work, we report a novel role of the endoplasmic reticulum (ER) for protein recycling as discovered in trafficking studies of the ion channel TRPL in photoreceptor cells of Drosophila. TRPL is located within the rhabdomeric membrane from where it is endocytosed upon light stimulation and stored in the cell body. Conventional immunohistochemistry as well as stimulated emission depletion super‐resolution microscopy revealed TRPL storage at the ER after illumination, suggesting an unusual recycling route of TRPL. Our results also imply that both phospholipase D (PLD) and retromer complex are required for correct recycling of TRPL to the rhabdomeric membrane. Loss of PLD activity in PLD3.1 mutants results in enhanced degradation of TRPL. In the retromer mutant vps35MH20, TRPL is trapped in a Rab5‐positive compartment. Evidenced by epistatic analysis in the double mutant PLD3.1 vps35MH20, PLD activity precedes retromer function. We propose a model in which PLD and retromer function play key roles in the transport of TRPL to an ER enriched compartment.