Browsing by Person "Sus, Nadine"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Publication Demethoxycurcumin and Bisdemethoxycurcumin are more bioavailable than Curcumin: A meta-analysis of randomized cross-over trials in healthy umans and an In Vitro mechanistic exploration(2023) Desmarchelier, Charles; Sus, Nadine; Marconot, Grégory; Gillet, Guillian; Resseguier, Noémie; Frank, JanBackground: Curcuminoids are secondary plant metabolites found in turmeric and many dietary supplements. They usually consist of a mixture of curcumin (CUR), demethoxycurcumin (dCUR) and bisdemethoxycurcumin (bdCUR). CUR, the main curcuminoid, has been intensely investigated for its putative effects against, e.g., inflammation, oxidative stress and cancer. However, CUR displays very poor bioavailability. We have previously shown that, when brought by turmeric, dCUR and bdCUR, which can also exert health effects, display greater in vitro bioaccessibility than CUR (PMID: 37073511). However, their bioavailability relative to that of CUR has not been thoroughly investigated. Objective: We aimed to compare the bioavailability of dCUR and bdCUR to that of CUR in a meta-analysis of clinical trials in healthy humans and to compare their in vitro bioaccessibility and enterocyte uptake efficiency. Methods and Results: Studies published until 2022 were searched for using Medline and Scopus. The included studies were randomized trials that measured the bioavailability of CUR, dCUR and bdCUR in healthy participants. Estimates were calculated using a random-effects model. Fifteen trials were included in the study, representing a total of 50 interventions, i.e., each trial investigated several curcuminoid formulations, in 762 participants. The relative bioavailabilities were calculated using the inverse variance method. dCUR was 2.32 (95% CI:1.70, 3.13) times more bioavailable than CUR, while bdCUR was 2.57 (95% CI: 1.58, 4.16) times more bioavailable than CUR, with some heterogeneity across the formulations used. Using an in vitro gastro-intestinal digestion model with pure curcuminoids, we showed that dCUR solubilization efficiency was 4.8 and 5.3 times higher than that of CUR and bdCUR, respectively (p < 0.001), while its micellization efficiency was 10.3 and 5.1 times higher than that of CUR and bdCUR, respectively (p < 0.001). Conclusions: bdCUR and dCUR display greater bioavailability in humans compared to CUR. A subgroup analysis by formulation is undergoing investigation and will be presented. For dCUR, this difference is partly explained by higher in vitro bioaccessibility. Uptake efficiency measurements of pure curcuminoids and of curcuminoids from in vitro digestion fluids are undergoing investigation and will be presented. bdCUR and dCUR might therefore represent relevant alternatives to CUR for the systematic delivery of curcuminoids.Publication Dietary intake of fructooligosaccharides protects against metabolic derangements evoked by chronic exposure to fructose or galactose in rats(2023) Almasri, Fidèle; Collotta, Debora; Aimaretti, Eleonora; Sus, Nadine; Aragno, Manuela; Dal Bello, Federica; Eva, Carola; Mastrocola, Raffaella; Landberg, Rikard; Frank, Jan; Collino, MassimoScope: Diets rich in fat and sugars evoke chronic low-grade inflammation, leading to metabolic derangements. This study investigates the impact of fructose and galactose, two commonly consumed simple sugars, on exacerbation of the harmful effects caused by high fat intake. Additionally, the potential efficacy of fructooligosaccharides (FOS), a fermentable dietary fiber, in counteracting these effects is examined. Methods and results: Male Sprague-Dawley rats (six/group) are fed 8 weeks as follows: control 5% fat diet (CNT), 20% fat diet (FAT), FAT+10% FOS diet (FAT+FOS), FAT+25% galactose diet (FAT+GAL), FAT+GAL+10% FOS diet (FAT+GAL+FOS), FAT+25% fructose diet (FAT+FRU), FAT+FRU+10% FOS diet (FAT+FRU+FOS). The dietary manipulations tested do not affect body weight gain, blood glucose, or markers of systemic inflammation whereas significant increases in plasma concentrations of triacylglycerols, cholesterol, aspartate aminotransferase, and alanine aminotrasferase are detected in both FAT+FRU and FAT+GAL compared to CNT. In the liver and skeletal muscle, both sugars induce significant accumulation of lipids and advanced glycation end-products (AGEs). FOS supplementation prevents these impairments. Conclusion: This study extends the understanding of the deleterious effects of a chronic intake of simple sugars and demonstrates the beneficial role of the prebiotic FOS in dampening the sugar-induced metabolic impairments by prevention of lipid and AGEs accumulation.Publication Increasing post-digestive solubility of curcumin is the most successful strategy to improve its oral bioavailability: A randomized cross-over trial in healthy adults and in vitro bioaccessibility experiments(2021) Flory, Sandra; Sus, Nadine; Haas, Kathrin; Jehle, Sina; Kienhöfer, Eva; Waehler, Reinhard; Adler, Günther; Venturelli, Sascha; Frank, JanScope: Different mechanistic approaches to improve the low oral bioavailability of curcumin have been developed, but not yet directly compared in humans. Methods and Results: In a randomized, double-blind, cross-over trial with 12 healthy adults, the 24 h pharmacokinetics of a single dose of 207 mg curcumin is compared from the following formulations: native, liposomes, with turmeric oils, with adjuvants (including piperine), submicron-particles, phytosomes, γ-cyclodextrin complexes, and micelles. No free, but only conjugated curcumin is detected in all subjects. Compared to native curcumin, a significant increase in the area under the plasma concentration–time curve is observed for micellar curcumin (57-fold) and the curcumin-γ-cyclodextrin complex (30-fold) only. In vitro digestive stability, solubility, and micellization efficiency of micellar curcumin (100%, 80%, and 55%) and curcumin-γ-cyclodextrin complex (73%, 33%, and 23%) are higher compared to all other formulations (<72%, <8%, and <4%). The transport efficiencies through Caco-2 cell monolayers of curcumin from the digested mixed-micellar fractions did not differ significantly. Conclusion: The improved oral bioavailability of micellar curcumin, and to a lesser extent of γ-cyclodextrin curcumin complexes, appears to be facilitated by increased post-digestive stability and solubility, whereas strategies targeting post-absorptive processes, including inhibition of biotransformation, appear ineffective.Publication Synthesis of human phase I and phase II metabolites of hop (Humulus lupulus) prenylated flavonoids(2022) Buckett, Lance; Schönberger, Sabrina; Spindler, Veronika; Sus, Nadine; Schoergenhofer, Christian; Frank, Jan; Frank, Oliver; Rychlik, MichaelHop prenylated flavonoids have been investigated for their in vivo activities due to their broad spectrum of positive health effects. Previous studies on the metabolism of xanthohumol using untargeted methods have found that it is first degraded into 8-prenylnaringenin and 6-prenylnaringenin, by spontaneous cyclisation into isoxanthohumol, and subsequently demethylated by gut bacteria. Further combinations of metabolism by hydroxylation, sulfation, and glucuronidation result in an unknown number of isomers. Most investigations involving the analysis of prenylated flavonoids used surrogate or untargeted approaches in metabolite identification, which is prone to errors in absolute identification. Here, we present a synthetic approach to obtaining reference standards for the identification of human xanthohumol metabolites. The synthesised metabolites were subsequently analysed by qTOF LC-MS/MS, and some were matched to a human blood sample obtained after the consumption of 43 mg of micellarised xanthohumol. Additionally, isomers of the reference standards were identified due to their having the same mass fragmentation pattern and different retention times. Overall, the methods unequivocally identified the metabolites of xanthohumol that are present in the blood circulatory system. Lastly, in vitro bioactive testing should be applied using metabolites and not original compounds, as free compounds are scarcely found in human blood.Publication Vitamin E and carotenoid profiles in leaves, stems, petioles and flowers of stinging nettle (Urtica leptophylla Kunth) from Costa Rica(2022) Montoya‐Arroyo, Alexander; Toro‐González, Camilo; Sus, Nadine; Warner, Jorge; Esquivel, Patricia; Jiménez, Víctor M; Frank, JanBACKGROUND Local leafy vegetables are gaining attention as affordable sources of micronutrients, including vitamins, pro-vitamin carotenoids and other bioactive compounds. Stinging nettles (Urtica spp.) are used as source of fibers, herbal medicine and food. However, despite the relatively wide geographical spread of Urtica leptophylla on the American continent, little is known about its content of vitamin E congeners and carotenoids. We therefore investigated the particular nutritional potential of different plant structures of wild Costa Rican U. leptophylla by focusing on their vitamin E and carotenoid profiles. RESULTS Young, mature and herbivore-damaged leaves, flowers, stems and petioles were collected and freeze-dried. Vitamin E and carotenoids were determined by high-performance liquid chromatography after liquid/liquid extraction with hexane. α-Tocopherol was the major vitamin E congener in all structures. Flowers had a high content of γ-tocopherol. Herbivore-damaged leaves had higher contents of vitamin E than undamaged leaves. Lutein was the major and β-carotene the second most abundant carotenoid in U. leptophylla. No differences in carotenoid profiles were observed between damaged and undamaged leaves. CONCLUSION The leaves of U. leptophylla had the highest nutritional value of all analyzed structures; therefore, they might represent a potential source of α-tocopherol, lutein and β-carotene.Publication Walnut oil reduces Aβ levels and increases neurite length in a cellular model of early Alzheimer disease(2022) Esselun, Carsten; Dieter, Fabian; Sus, Nadine; Frank, Jan; Eckert, Gunter P.Mitochondria are the cells’ main source of energy. Mitochondrial dysfunction represents a key hallmark of aging and is linked to the development of Alzheimer’s disease (AD). Maintaining mitochondrial function might contribute to healthy aging and the prevention of AD. The Mediterranean diet, including walnuts, seems to prevent age-related neurodegeneration. Walnuts are a rich source of α-linolenic acid (ALA), an essential n3-fatty acid and the precursor for n3-long-chain polyunsaturated fatty acids (n3-PUFA), which might potentially improve mitochondrial function. (2) Methods: We tested whether a lipophilic walnut extract (WE) affects mitochondrial function and other parameters in human SH-SY5Y cells transfected with the neuronal amyloid precursor protein (APP695). Walnut lipids were extracted using a Soxhlet Extraction System and analyzed using GC/MS and HPLC/FD. Adenosine triphosphate (ATP) concentrations were quantified under basal conditions in cell culture, as well as after rotenone-induced stress. Neurite outgrowth was investigated, as well as membrane integrity, cellular reactive oxygen species, cellular peroxidase activity, and citrate synthase activity. Beta-amyloid (Aβ) was quantified using homogenous time-resolved fluorescence. (3) Results: The main constituents of WE are linoleic acid, oleic acid, α-linolenic acid, and γ- and δ-tocopherol. Basal ATP levels following rotenone treatment, as well as citrate synthase activity, were increased after WE treatment. WE significantly increased cellular reactive oxygen species but lowered peroxidase activity. Membrane integrity was not affected. Furthermore, WE treatment reduced Aβ1–40 and stimulated neurite growth. (4) Conclusions: WE might increase ATP production after induction of mitochondrial biogenesis. Decreased Aβ1–40 formation and enhanced ATP levels might enhance neurite growth, making WE a potential agent to enhance neuronal function and to prevent the development of AD. In this sense, WE could be a promising agent for the prevention of AD.