Browsing by Person "Tingler, Melanie Bianca"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Axes determination in the frog Xenopus laevis : the function of the goosecoid, myo1d and dmrt2(2020) Tingler, Melanie Bianca; Schweickert, AxelDuring early embryogenesis, pattern formation processes along the head-trunk (anteroposterior, AP), belly-back (dorsoventral, DV) and left-right (LR) body axis generate the fundamental body plan of the bilateria. The formation of the LR axis is exceptional because externally our body is bilateral symmetric whereas most inner organs are shaped and positioned asymmetrically. The three body axes are basically specified during gastrulation and neurulation by a set of developmental control genes. The aim of this work was to analyze the function of the highly conserved genes, goosecoid (gsc), myosin1d (myo1d) und dmrt2 during body axis determination in Xenopus. The first chapter of this work describes the activity of the homeobox transcription factor Goosecoid during AP- and DV-axis formation. Gsc acts as an autoregulatory transcriptional repressor and importantly is expressed in the Spemann Organizer (SO) of all vertebrate embryos. The SO represents the main dorsal signaling center for primary axis induction, regulates embryonic patterning and cell movements. It is further required for AP i.e. head and trunk development. Transferring of SO or gsc misexpression to ventral half of embryos resultes in secondary axis formation i.e. siamnese twins. However, SO function of Gsc was enigmatic, as gsc mutants showed no defects on early developmental processes what challenged Gsc function in the SO. In this chapter, gsc was characterized by conducting gain of function experiments in the embryonic midline of Xenopus embryos. Gsc was able to repress planar cell polarity (PCP) in a cell- and non-cell autonomous fashion leading to neural tube closure defects. In the early gastrulae, Gsc separates the head from the trunk mesoderm by repressing the mesodermal t-box gene transcription factor T (Tbxt). This inhibition allows the migration of the head mesodermal cells whereas the trunk notochord elongates by mediolateral intercalation. Gsc activity on PCP signaling seems to be specific for vertebrates only and correlates with the presence of two novel domains. The determination of the LR body axis is discussed in the second chapter of this work. At the so called left-right organizer (LRO) a cilia-mediated leftward-fluid flow initiates the symmetry breaking event in neurulae embryos. Lateral sensory cells (sLRO) of the LRO perceive flow on the left side and translate it into the left asymmetric induction of the highly conserved Nodal cascade. If and how the unconventional, actin-associated motor protein Myosin1d (Myo1d) as well as the transcription factor Doublesex and mab-3 related 2 (Dmrt2) intervene in LR specification was analyzed in this chapter. In evolutionary terms the study of myo1d was of high interest because in Drospohila, which lacks a ciliary flow mechanism, the homologous gene, myo31df, controls LR axis determination. Manipulations of myo1d in Xenopus demonstrated that in vertebrates Myo1d is involved in the cilia-based symmetry breakage event. By interacting with the PCP signaling pathway, Myo1d ensures leftward-fluid flow by regulating ciliary outgrowth and polarization. In Drosophila and Xenopus Myo1d interacts with PCP signaling and seems to link an ancestral symmetry breaking mechanism of the fly to the newly evolved leftward-fluid flow in vertebrates. Based on studies in zebrafish, which identified Dmrt2 as another factor involved in LR development and somitogenesis, we started the analysis of dmrt2 in Xenopus. Somitogenesis and laterality determination which on first sight are functionally distinct processes were analyzed in the context of dmrt2 function. In Xenopus, flow-sensing cells are affiliated to the somitic cell lineage and therefor paraxial mesoderm specification is crucial for setting up a functional LRO. Dmrt2 specifies the paraxial mesoderm and especially the sLRO by inducing the myogenic transcription factor myf5 in early gastrulae. This demonstrated for the first time experimentally how somitogenesis and laterality determination are intertwined and describes the genesis of the Xenopus sLRO cells in more detail.