Browsing by Person "Vereecken, Harry"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Linking horizontal crosshole GPR variability with root image information for maize crops(2023) Lärm, Lena; Bauer, Felix Maximilian; van der Kruk, Jan; Vanderborght, Jan; Morandage, Shehan; Vereecken, Harry; Schnepf, Andrea; Klotzsche, AnjaNon‐invasive imaging of processes within the soil–plant continuum, particularly root and soil water distributions, can help optimize agricultural practices such as irrigation and fertilization. In this study, in‐situ time‐lapse horizontal crosshole ground penetrating radar (GPR) measurements and root images were collected over three maize crop growing seasons at two minirhizotron facilities (Selhausen, Germany). Root development and GPR permittivity were monitored at six depths (0.1–1.2 m) for different treatments within two soil types. We processed these data in a new way that gave us the information of the “trend‐corrected spatial permittivity deviation of vegetated field,” allowing us to investigate whether the presence of roots increases the variability of GPR permittivity in the soil. This removed the main non‐root‐related influencing factors: static influences, such as soil heterogeneities and rhizotube deviations, and dynamic effects, such as seasonal moisture changes. This trend‐corrected spatial permittivity deviation showed a clear increase during the growing season, which could be linked with a similar increase in root volume fraction. Additionally, the corresponding probability density functions of the permittivity variability were derived and cross‐correlated with the root volume fraction, resulting in a coefficient of determination (R2) above 0.5 for 23 out of 46 correlation pairs. Although both facilities had different soil types and compaction levels, they had similar numbers of good correlations. A possible explanation for the observed correlation is that the presence of roots causes a redistribution of soil water, and therefore an increase in soil water variability.Publication Soil water status shapes nutrient cycling in agroecosystems from micrometer to landscape scales(2022) Bauke, Sara L.; Amelung, Wulf; Bol, Roland; Brandt, Luise; Brüggemann, Nicolas; Kandeler, Ellen; Meyer, Nele; Or, Dani; Schnepf, Andrea; Schloter, Michael; Schulz, Stefanie; Siebers, Nina; von Sperber, Christian; Vereecken, HarrySoil water status, which refers to the wetness or dryness of soils, is crucial for the productivity of agroecosystems, as it determines nutrient cycling and uptake physically via transport, biologically via the moisture‐dependent activity of soil flora, fauna, and plants, and chemically via specific hydrolyses and redox reactions. Here, we focus on the dynamics of nitrogen (N), phosphorus (P), and sulfur (S) and review how soil water is coupled to the cycling of these elements and related stoichiometric controls across different scales within agroecosystems. These scales span processes at the molecular level, where nutrients and water are consumed, to processes in the soil pore system, within a soil profile and across the landscape. We highlight that with increasing mobility of the nutrients in water, water‐based nutrient flux may alleviate or even exacerbate imbalances in nutrient supply within soils, for example, by transport of mobile nutrients towards previously depleted microsites (alleviating imbalances), or by selective loss of mobile nutrients from microsites (increasing imbalances). These imbalances can be modulated by biological activity, especially by fungal hyphae and roots, which contribute to nutrient redistribution within soils, and which are themselves dependent on specific, optimal water availability. At larger scales, such small‐scale effects converge with nutrient inputs from atmospheric (wet deposition) or nonlocal sources and with nutrient losses from the soil system towards aquifers. Hence, water acts as a major control in nutrient cycling across scales in agroecosystems and may either exacerbate or remove spatial disparities in the availability of the individual nutrients (N, P, S) required for biological activity.