Browsing by Person "Vick, Philipp"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Identification of ZBTB26 as a novel risk factor for congenital hypothyroidism(2021) Vick, Philipp; Eberle, Birgit; Choukair, Daniela; Weiss, Birgit; Roeth, Ralph; Schneider, Isabelle; Paramasivam, Nagarajan; Bettendorf, Markus; Rappold, Gudrun A.Congenital primary hypothyroidism (CH; OMIM 218700) is characterized by an impaired thyroid development, or dyshormonogenesis, and can lead to intellectual disability and growth retardation if untreated. Most of the children with congenital hypothyroidism present thyroid dysgenesis, a developmental anomaly of the thyroid. Various genes have been associated with thyroid dysgenesis, but all known genes together can only explain a small number of cases. To identify novel genetic causes for congenital hypothyroidism, we performed trio whole-exome sequencing in an affected newborn and his unaffected parents. A predicted damaging de novo missense mutation was identified in the ZBTB26 gene (Zinc Finger A and BTB Domain containing 26). An additional cohort screening of 156 individuals with congenital thyroid dysgenesis identified two additional ZBTB26 gene variants of unknown significance. To study the underlying disease mechanism, morpholino knock-down of zbtb26 in Xenopus laevis was carried out, which demonstrated significantly smaller thyroid anlagen in knock-down animals at tadpole stage. Marker genes expressed in thyroid tissue precursors also indicated a specific reduction in the Xenopus ortholog of human Paired-Box-Protein PAX8, a transcription factor required for thyroid development, which could be rescued by adding zbtb26. Pathway and network analysis indicated network links of ZBTB26 to PAX8 and other genes involved in thyroid genesis and function. GWAS associations of ZBTB26 were found with height. Together, our study added a novel genetic risk factor to the list of genes underlying congenital primary hypothyroidism and provides additional support that de novo mutations, together with inherited variants, might contribute to the genetic susceptibility to CH.Publication Left-right asymmetry in Xenopus laevis : functional dissection of leftward flow(2009) Vick, Philipp; Blum, MartinDespite their external bilateral symmetry, vertebrates have a conserved left right (LR) asymmetry of their inner organs. For all vertebrates, it is well-known that the asymmetric organogenesis is preceded by the left-sided nodal signaling cascade during embryonic development. A question which has not been settled in detail is how the first asymmetrically directed signal arises, which activates nodal only on the left side. In mice and fish embryos an extracellular leftward fluid flow ? generated by rotating cilia ? was shown to be functionally necessary for gene activation. Recently, this process has also been demonstrated in frog embryos and its mechanic inhibition caused laterality defects. This raised the question if this process is also conserved among vertebrates. The aim of this study was to analyze the mechanism of flow in the frog in the context of the known models. Thereby, its prerequisites and the exact mode of activation of the left-sided genes should be assessed. Finally, general conclusions on the symmetry breakage of vertebrates were to be drawn. Loss of function of axonemal dynein heavy chains inhibited ciliary movement, fluid flow and laterality development of the embryos. By showing that flow was only necessary on the left half of the ciliated epithelium (GRP), definite statements could be made concerning origin, identity and possibility of a transported substance. Moreover, a function for GRP morphogenesis and thus for the generation of flow were proven for the serotonin receptor 3 and the calcium channel Pkd2. These results did not confirm the hypothesis that Pkd2 causes a flow-dependent left-sided calcium signal. Consequently, this contradicted the so-called "2-cilia model" in favor of an early morphogenetic function in frog. In the course of a collaboration it could be shown, that the RNA-binding protein xBic-C has a conserved function for cilia polarization and thus for the flow in both Xenopus and mice. Additionally, up to now, a right-sided nodal inhibitory function has been assigned to the protein coco. However, the exact mechanism was unknown. By specific, combined left- and right-sided loss of function experiments with coco, nodal and the above mentioned components, it could be demonstrated that coco but not nodal is directly dependent on leftward flow. With the flow, coco was downregulated on the left side only and could thus no longer inhibit nodal there. Loss of flow or xBic-C function ? but not that of Pkd2 ? could be rescued by coco inhibition; this revealed a clear hierarchy. Taken together a sequence of conditions could be formulated: Pkd2 and the serotonin receptor 3 are obligatory for the formation of the GRP and correct flow before neurulation. xBic-C also precedes the flow and is required for cilia polarization but seemed also to have a further function. coco is downstream of the fluid flow and is downregulated as its direct consequence on the left side. nodal, in turn, is downstream of this order and is only released on the left side where it can thus act as a putative mediator to transfer the generated signal into the lateral plate mesoderm. These results are discussed in terms of evolutionary origin and conservation.