Browsing by Person "Wachendorf, Michael"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Management effect on the weed control efficiency in double cropping systems(2023) Schmidt, Fruzsina; Böhm, Herwart; Graß, Rüdiger; Wachendorf, Michael; Piepho, Hans-PeterThere are often negative side-effects associated with the traditional (silage) maize cropping system related to the unprotected soil surface. Reducing soil disturbance could enhance system sustainability. Yet, increased weed pressure and decreased nitrogen availability, particularly in organic agriculture, may limit the implementation of alternative management methods. Therefore, a field experiment was conducted at two distinct locations to evaluate the weed control efficiency of 18 organically managed silage maize cropping systems. Examined parameters were relative weed groundcover (GCweed) and its correlation with maize dry matter yield (DMY), relative proportion of dominant weed species (DWS) and their groups by life form (DWSgroup). Treatment factors comprised first crop (FC—winter pea, hairy vetch, and their mixtures with rye, control (sole silage maize cropping system—SCS)), management—incorporating FC use and tillage (double cropping system no-till (DCS NT), double cropping system reduced till (DCS RT), double cropped, mulched system (DCMS Roll) and SCS control), fertilization, mechanical weed control and row width (75 cm and 50 cm). The variation among environments was high, but similar patterns occurred across locations: Generally low GCweed occurred (below 28%) and, therefore, typically no correlation to maize DMY was observed. The number of crops (system), system:management and occasionally management:FC (group) influenced GCweed and DWS(group). Row width had inconsistent and/or marginal effects. Results suggest differences related to the successful inclusion of DCS and DCMS into the rotation, and to the altered soil conditions, additional physical destruction by shallow tillage operations, especially in the early season, which possibly acts through soil thermal and chemical properties, as well as light conditions. DCS RT could successfully reduce GCweed below 5%, whereas DCS NT and particularly DCMS (Mix) suffered from inadequate FC management. Improvements in DCMS may comprise the use of earlier maturing legumes, especially hairy vetch varieties, further reduction/omission of the cereal companion in the mixture and/or more destructive termination of the FC.Publication Management Effects on the Performance of Double Cropping Systems—Results from a Multi-Site Experiment(2022) Schmidt, Fruzsina; Böhm, Herwart; Piepho, Hans-Peter; Urbatzka, Peer; Wachendorf, Michael; Graß, RüdigerTraditional (silage) maize production often has negative side-effects related to unprotected soil surface. There are several possibilities to enhance system sustainability through reducing soil disturbance. However, implementation may be hindered due to reduced nitrogen availability and increased weed infestation, especially in organic agriculture. A field experiment to evaluate yield potential of 18 silage maize cropping systems under organic management was conducted at three distinct locations. Examined parameters were first crop, maize and total harvested dry matter yield (DMY), and maize dry matter content (DMC). Treatment factors included first crop (FC—winter pea, hairy vetch, and their mixtures with rye, control (SCS), management—incorporating FC use and tillage (double cropping system no-till (DCS NT), double cropping system reduced till (DCS RT), double cropped, mulched system terminated with roller-crimper (DCMS Roll), SCS control), fertilization, mechanical weed control—and row width (75 cm, 50 cm). A high variation among environments occurred, but similar patterns manifested across locations: Number of crops in the rotation had a high influence, followed by management and FC. Row width had only marginal and inconsistent effect. FC mixtures generally yielded higher than pure legumes. Maize DMY in DCS, DCMS was lower than or comparable to SCS. Maize DMC were environment-specifically below acceptable range, especially under DCMS. Total harvested DMY in DCS were similar to or greater than SCS. Results suggest differences from the optimization of farming operations for one (SCS) or two crops (DCS, DCMS) with strong effects at early maize development and on the length of season. FC use and tillage factors possibly altered the soil water, temperature, and mineralization dynamics, resulting in modified maize growth. DCS RT and DCMS Pure performed with the best maize yields, improved soil protection, and tillage reduction in the silage maize part of the rotation under organic management. However, alternative management systems, especially under DCS NT and DCMS (Mix) with studied maize maturity classes are less suited, particularly in cool and wet spring conditions, because of a potentially slower development of FC, a later establishment of maize plants and therefore, a shorter growing season for the maize crop.