Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Wagner, Tim"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Countercurrent chromatographic fractionation followed by gas chromatography/mass spectrometry identification of alkylresorcinols in rye
    (2020) Hammerschick, Tim; Wagner, Tim; Vetter, Walter
    Alkylresorcinols (5-alkyl-1,3-dihydroxybenzenes, ARs) are bioactive phenolic lipid compounds which are particularly abundant in rye and partly other cereals. In this study on ARs, whole rye grain extracts were gained with cyclohexane/ethyl acetate (46/54, w/w). Silylated extracts were used to develop a gas chromatography with mass spectrometry method in the selected ion monitoring mode (GC/MS-SIM) for the sensitive detection of conventional ARs along with keto-substituted (oxo-AR) and ring-methylated ARs (mAR) with 5-alkyl chain lengths of 14 to 27 carbon atoms and 0 to 4 double bonds in one run. Analysis was performed by countercurrent chromatographic (CCC) fractionation using the solvent system n-hexane/ethyl acetate/methanol/water (9/1/9/1, v/v/v/v). Subsequent GC/MS-(SIM) analysis of 80 silylated CCC fractions enabled the detection of 74 ARs in the sample. The CCC elution of the ARs followed the equivalent chain length (ECL) rule in which one double bond compensated the effect of two (additional) carbon atoms. Novel or rarely reported ARs were detected in virtually all classes, i.e. saturated AR (AR14:0), even-numbered monounsaturated AR isomers (AR16:1-AR26:1), triunsaturated ARs (AR25:3), oxo-ARs (AR17:0 oxo, AR19:1 oxo, AR21:2 oxo, AR23:2 oxo) and odd-numbered methyl-ARs (mAR15:0-mAR23:0). Positions of the double bonds of monounsaturated ARs and oxo-ARs were determined with the help of dimethyl disulfide (DMDS) derivatives.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy