Browsing by Person "Wangler, Julia"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Characterization of the rehydration behavior of food powders(2019) Wangler, Julia; Kohlus, ReinhardThe rehydration behavior of food powders is of high importance in terms of powder processing and product quality. Rehydration of powders mainly depends on the physical powder characteristics particle size, porosity and wettability, the latter being expressed by the contact angle between solid and rehydrating liquid. With focus on food powders, it could be shown that the rehydration behavior is strongly influenced by dynamic changes of these physical characteristics. This includes the initiation of dissolution and swelling directly after powder-liquid contact. Especially in case of biopolymers, which were investigated in detail by the example of xanthan gum, guar gum and alginate, these processes are important to describe their rehydration behavior. Due to the special characteristics of these biopolymers dissolution and swelling result in an increase of viscosity as well as in a decrease of bulk porosity. The kinetics and interactions of these processes significantly affect the individual steps of rehydration and have to be considered in describing the process of food powder rehydration. For inert powder-liquid systems capillary liquid uptake into a powder bulk can be described by the Washburn equation which equates the capillary pressure and the hydrodynamic flow resistance. This approach was used as basic equation to describe capillary liquid uptake of food powders. The validity of the original approach is restricted to the case of constant powder and liquid properties. With regard to food powders, changes within the powder-liquid system were considered by a stepwise adaption of the variables of the Washburn equation. Thus, the first part of this thesis focused on establishing and defining methods to characterize the dynamics of the physical properties particle size, bulk porosity, viscosity and contact angle. This enabled a more detailed characterization of the interactions between food powder and liquid during rehydration. Wettability of food powders in contact with dist. water was assessed by contact angle measurements. Contact angles were 52° for alginate, 58.1° for xanthan gum and 70° for guar gum which confirmed their hydrophilic character. To describe the change of the bulk porosity a rheological measurement set-up was constructed to quantify the swelling behavior. Influence of viscosity on rehydration was determined by measuring the concentration dependent viscosity increase and the rate of viscosity increase over time. The change of viscosity as a consequence of dissolution allowed conclusions about the dissolution rate of biopolymers in highly concentrated situations. These results indicated that rehydration of guar gum is mainly influenced by viscosity effects whereas swelling has the highest impact on the rehydration behavior of xanthan gum and alginate. Further methods such as Nuclear Magnetic Resonance analysis enabled a more detailed characterization concerning the dynamics of powder-liquid interactions and the strength of water binding within these biopolymer gels. The strength of water binding was found to correlate with the stability of highly concentrated biopolymer aggregates. The aggregate stability was determined by rheological analyses and is of importance, particularly with regard to powder dispersability. To predict food powder rehydration, a model was established using a VoF approach. To simulate capillary liquid rise based on physical characteristics, dynamic changes were resolved both spatial and temporally. To describe particle and liquid properties more precisely, a model system consisting of biopolymer coated glass beads was developed by fluid bed technology. By the variation of the coating layer thickness and the coating material, dynamic changes within the system could be controlled which enabled a more differentiated description. A parameter variation study was conducted to simulate the influence and interaction of dynamic processes on capillary liquid uptake into such powder systems. Capillary liquid uptake into the coated glass beads was investigated experimentally. It could be shown that even with coating layers of 0.5 µm dynamic effects are sufficiently strong to cause a stop of capillary liquid uptake. It has been shown that viscosity development dominates guar gum rehydration whereas swelling is the prevalent mechanism in xanthan gum and alginate rehydration. Simulation of capillary liquid rise demonstrated that the influence of the coating layer thickness is not significant. This result could be explained by the slow dissolution rates of the biopolymer samples. Calculations indicated that even a coating layer of 0.5 µm could only be dissolved partially after a dissolution time of 250 s. This explains the little impact of coating layer thickness on viscosity development and thus on capillary liquid uptake. Further explanations focus on biopolymer swelling. Simulation showed that coating layers of 0.5 µm are sufficient to cause swelling-induced pore-blocking conditions.