Browsing by Person "Yousefi, Afsaneh"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Adapting wheat production to global warming in West Asia: facultative wheat outperforms winter and spring wheat at conventional nitrogen levels(2025) Yousefi, Afsaneh; Koocheki, Alireza; Mahallati, Mehdi Nassiri; Khorramdel, Soroor; Trenz, Jonas; Malakshahi Kurdestani, Ali; Ludewig, Uwe; Maywald, Niels JulianGlobal warming and weather anomalies pose significant threats to cereal production in West Asia. Winter wheat, which requires vernalization to trigger reproductive growth, is particularly vulnerable to heat, while spring wheat faces limitations due to short and hot vegetation periods. Facultative wheat, which does not require vernalization and can be planted in either fall or spring, offers potential flexibility and resilience to fluctuating temperatures. This study aimed to evaluate the development and grain yield of facultative, spring, and winter wheat varieties under different nitrogen fertilization rates in current climate conditions. Facultative wheat, grown as either facultative winter (FWW) or facultative spring (FSW), along with winter (WW) and spring wheat (SW) varieties, was cultivated over two consecutive seasons (2020–2022) at Ferdowsi University of Mashhad, Iran. Developmental stages were monitored, and grain yield, protein, and nutrient concentrations were measured at four nitrogen levels (0, 100, 200, and 300 kg N ha −1 ) in both shoots and grains. Crop modeling under the RCP 8.5 climate scenario supported the experiments and projections. Facultative wheat sown in autumn exhibited a shorter tillering stage and a longer early reproductive stage compared to winter wheat. While nitrogen fertilization delayed development, it significantly increased yield. Facultative wheat achieved higher grain yields at conventional nitrogen levels (100–200 kg N ha −1 ). Additionally, increasing nitrogen fertilization improved grain protein and nutrient concentrations (N, P, and K). Crop modeling indicated that facultative varieties sown in winter could offer greater yield stability and might benefit from a more consistent phenological development. Overall, facultative wheat performed better at conventional nitrogen levels, highlighting its potential in a changing climate in West Asia. Optimizing sowing dates and nitrogen fertilization could help mitigate some of the negative effects of rising temperatures, enhancing wheat resilience and productivity.Publication Enhancing chickpea yield through the application of sulfur and sulfur-oxidizing bacteria(2025) Nabati, Jafar; Yousefi, Afsaneh; Hasanfard, Alireza; Nemati, Zahra; Kahrom, Nastaran; Malakshahi Kurdestani, AliPlant growth-promoting microorganisms can enhance sulfur uptake and boost crop production. This study was conducted to evaluate the changes in physiology, metabolism, and yield of chickpeas following the application of sulfur and two microbial consortia: (1) Thiobacillus sp., Bacillus subtilis , Paraburkholderia fungorum , and Paenibacillus sp.; and (2) Enterobacter sp. and Pseudomonas sp. The soil amendment involving a combination of sulfur and sulfur-oxidizing bacteria (SOB) in any quantity had positive effects on the availability of phosphorus, nitrogen, and potassium in the soil. A combination of 90% sulfur with Enterobacter sp. and Pseudomonas sp. resulted in a decrease in soil pH after harvesting in both years. Both years showed a strong correlation between soil pH and soil macronutrient concentration. In both years, the maximum grain yield was achieved through a combination of increased sulfur levels and SOB. The results reveal that sulfur application and SOB can increase nutrient availability, nutrient uptake, and yield of chickpea growth in calcareous soils.Publication Optimizing mung bean productivity and root morphology with biofertilizers for sustainable farming(2025) Nabati, Jaafar; Mirzaeetalarposhti, Reza; Yousefi, Afsaneh; Kurdestani, Ali Malakshahi; Nabati, Jaafar; Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran; Mirzaeetalarposhti, Reza; Institute of Crop Science, University of Hohenheim, 70599, Stuttgart, GermanyThe excessive use of chemical fertilizers has raised major environmental and economic concerns in legume cultivation. This study assessed the effects of various fertilizers, including biofertilizers and chemical nitrogen, on yield, root characteristics, and nutrient dynamics in two mung bean genotypes (Partow, IC418452). Field trials were conducted over a two-year period in Mashhad, Iran, using a factorial randomized block design. Treatments included two genotypes and six fertilizer levels: control, N-fixing bacteria (FLNF), P-solubilizing bacteria (PSB), K-solubilizing bacteria (KSB), a consortium (FLNF + PSB + KSB), and Urea. Yield components, biomass, root morphology, nodulation, and plant/soil NPK concentrations were measured and analyzed. Fertilizers significantly affected yield, biomass, root structure, and nutrient uptake. Urea yielded the highest biomass, grain yield, and root area, especially in Partow. However, the microbial consortium significantly improved yield components compared to the control and uniquely maximized root nodulation and inoculation percentage, indicating an enhanced biological nitrogen fixation potential. On average across the two seasons, urea increased grain yield by 46% and biomass by 41% relative to the control, whereas the microbial consortium enhanced root nodulation by 62% and yield by 32%. Significant genotype×fertilizer interactions highlighted genotype-specific responses. Nodulation correlated positively with yield. Both urea and the PGPR consortium significantly increased mung bean productivity. While urea maximized yield, the consortium provided considerable yield gains and enhanced biological nitrogen fixation potential, presenting a viable and sustainable alternative to reduce reliance on chemical nitrogen. The goal was to understand the relationships between root morphology, nutrient utilization, and yield to promote sustainable, high-yield mung bean cultivation. These findings highlight the potential of multi-strain biofertilizers to maintain mung-bean productivity while reducing dependence on synthetic N inputs.
