Browsing by Person "ul Haq, Tanveer"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Biochar and slow-releasing nitrogen fertilizers improved growth, nitrogen use, yield, and fiber quality of cotton under arid climatic conditions(2021) Manzoor, Sobia; Habib-ur-Rahman, Muhammad; Haider, Ghulam; Ghafoor, Iqra; Ahmad, Saeed; Afzal, Muhammad; Nawaz, Fahim; Iqbal, Rashid; Yasin, Mubashra; ul Haq, Tanveer; Danish, Subhan; Ghaffar, AbdulThe efficiency of nitrogenous fertilizers in South Asia is on a declining trajectory due to increased losses. Biochar (BC) and slow-releasing nitrogen fertilizers (SRNF) have been found to improve nitrogen use efficiency (NUE) in certain cases. However, field-scale studies to explore the potential of BC and SRNF in south Asian arid climate are lacking. Here we conducted a field experiment in the arid environment to demonstrate the response of BC and SRNF on cotton growth and yield quality. The treatments were comprised of two factors, (A) nitrogen sources, (i) simple urea, (ii)neem-coated urea, (iii)sulfur-coated urea, (iv) bacterial coated urea, and cotton stalks biochar impregnated with simple urea, and (B) nitrogen application rates, N1=160 kg ha-1, N2 = 120 kg ha-1, and N3 = 80 kg ha-1. Different SRNF differentially affected cotton growth, morphological and physiological attributes, and seed cotton yield (SCY). The bacterial coated urea at the highest rate of N application (160 kg ha-1) resulted in a higher net leaf photosynthetic rate (32.8 μmol m-2 s-1), leaf transpiration rate (8.10 mmol s-1), and stomatal conductance (0.502 mol m-2 s-1), while leaf area index (LAI), crop growth rate (CGR), and seed cotton yield (4513 kg ha-1) were increased by bacterial coated urea at 120 kg ha-1 than simple urea. However, low rate N application (80 kg ha-1) of bacterial coated urea showed higher nitrogen use efficiency (39.6 kg SCY kg-1 N). The fiber quality (fiber length, fiber strength, ginning outturn, fiber index, and seed index) was also increased with the high N application rates than N2 and N3 application. To summarize, the bacterial coated urea with recommended N (160 kg ha-1) and 75% of recommended N application (120 kg ha-1) may be recommended for farmers in the arid climatic conditions of Punjab to enhance the seed cotton yield, thereby reducing nitrogen losses.Publication Sulfate-based fertilizers regulate nutrient uptake, photosynthetic gas exchange, and enzymatic antioxidants to increase sunflower growth and yield under drought stress(2021) Shafiq, Bilal Ahamid; Nawaz, Fahim; Majeed, Sadia; Aurangzaib, Muhammad; Al Mamun, Abdullah; Ahsan, Muhammad; Ahmad, Khawaja Shafique; Shehzad, Muhammad Asif; Ali, Muqarrab; Hashim, Sarfraz; ul Haq, TanveerThe challenging impact of drought to agricultural productivity requires the adoption of mitigation strategies with a better understanding of underlying mechanisms responsible for drought tolerance. The present study aimed at investigating the effects of sulfur-based fertilizers on mitigation of drought stress in sunflower. Sulfate-containing fertilizers, viz., ammonium sulfate, zinc sulfate, magnesium sulfate, potassium sulfate, and gypsum, were initially evaluated at two different rates (10 and 20 mg kg−1 soil equivalent to 20 and 40 kg ha−1, respectively) for nutrient uptake and growth-promoting traits in sunflower seedlings (cv. Hysun-33). The best performing fertilizer (gypsum) was then selected to evaluate the response of sunflower under drought stress imposed at flowering stage for three weeks (25–30% water holding capacity). Results indicated significant amelioration of drought stress with higher activity of photosynthetic apparatus, upregulation of antioxidative enzymes, and increased achene yield by gypsum application. In comparison to control, gypsum-treated plants (20 mg kg−1 soil) exhibited higher water status (32%), leaf photosynthetic rate (29%), transpiration rate (67%), and stomatal conductance (118%) under drought stress. The antioxidant enzyme activities of catalase, guaiacol peroxidase, and superoxide dismutase were also increased by 67%, 62%, and 126%, respectively, resulting in higher achene yield (19%) under water-deficit conditions. This study indicates that the application of sulfur-based fertilizers (gypsum) can be used to induce drought tolerance and obtain high sunflower yields under drought stress, and furthermore, it is a cost-effective strategy resulting in high benefit–cost ratio with respect to no gypsum application.