Institut für Kulturpflanzenwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/12
Browse
Browsing Institut für Kulturpflanzenwissenschaften by Sustainable Development Goals "7"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Combined bioenergy and food potential of Opuntia ficus-indica grown on marginal land in rural Mexico(2024) Varela Pérez, Paola; Winkler, Bastian; Röcker, Philip; von Cossel, Moritz; Rubiera González, FernandoOpuntia ficus-indica (cactus pear) emerged as a promising crop for sustainable bioenergy production on marginal agricultural land, mitigating competition with food crops and lowering the risk of other indirect land use changes. In this study, the bioenergy potential is investigated of cactus pear residues within a smallholder farming context of Nopaltepec, a rural municipality in Central Mexico. Nopaltepec is a native environment of cactus pear and shows an annual production volume of 30 Gg of fresh matter. A bottom-up approach employing semi-structured interviews ( n = 16) was utilized to assess the feasibility of transforming the pruning residues of cactus pear into a viable bioenergy source. The results indicate a substantial bioenergy potential, with 27 Mg of fresh matter biomass (equivalent to 9720 m 3 biogas) per hectare obtainable annually without compromising fruit yields. Moreover, the digestate produced through anaerobic digestion can be recycled as biofertilizer, offering economic and ecological advantages to smallholders. Notably, farmers expressed keen interest in integrating this technology into their agricultural systems. This research underscores the potential of cactus pear residues for developing a decentralized bioenergy sector and provides valuable ideas for future bottom-up assessments in rural communities like Nopaltepec.Publication Influence of cutting height on biomass yield and quality of miscanthus genotypes(2021) Magenau, Elena; Kiesel, Andreas; Clifton‐Brown, John; Lewandowski, IrisCommercially achieved biomass yields are often lower than those obtained in scientific plot trials and estimated by crop models. This phenomenon is commonly referred to as the ‘commercial yield gap’. It needs to be understood and managed to achieve the yield expectations that underpin business models. Cutting height at harvest is one of the key factors determining biomass yield and quality. This study quantifies the impacts of cutting heights of diverse genotypes with different morphologies and in years with contrasting weather conditions before and during harvest. Harvests were made in March 2015 and March 2018 of six diverse miscanthus genotypes planted as part of the ‘OPTIMISC project’ in 2013 near Stuttgart, Germany. Biomass yield, dry matter content and nutrient concentrations were analysed in four 10 cm fractions working upwards from the ground level and a fifth fraction with the shoot biomass higher than 40 cm. As stems are slightly tapered (i.e. diameter decreases slightly with increasing cutting height), it was hypothesized that low cutting may lead to yield gains, but that these may be associated with lower quality biomass with higher moisture and higher nutrient offtakes. We calculated average yield losses of 270 kg ha−1 (0.83%) with each 1 cm increase in cutting height up to 40 cm. Although whole shoot mineral concentrations were significantly influenced by both genotype and year interactions, total nitrogen (1.89 mg g−1), phosphorus (0.51 mg g−1), potassium (3.72 mg g−1) and calcium (0.89 mg g−1) concentrations did not differ significantly from the concentrations in the lower basal sections. Overall, cutting height had a limited influence on nutrient and moisture content. Therefore, we recommend that cutting is performed as low as is practically possible with the available machinery and local ground surface conditions to maximize biomass yield.Publication Testing agronomic treatments to improve the establishment of novel miscanthus hybrids on marginal land(2025) Lewin, Eva; Clifton‐Brown, John; Jensen, Elaine; Lewandowski, Iris; Krzyżak, Jacek; Pogrzeba, Marta; Hartung, Jens; Wolfmüller, Cedric; Kiesel, Andreas; Fujii, YoshiharuMiscanthus is considered a promising candidate for the cultivation of marginal land. This land poses unique challenges, and experiments have shown that the “establishment phase” is of paramount importance to the long-term yield performance of miscanthus. This experiment analyzes novel miscanthus hybrids and how their establishment on marginal land can be improved through agronomic interventions. Experiments took place at two sites in Germany: at Ihinger Hof, with a very shallow soil profile and high stone content, and at Reichwalde, where the soil was repurposed river sediment with low organic matter, high stone content, and a compacted lower horizon. These marginal conditions functioned as test cases for the improvement of miscanthus establishment agronomy. Four hybrids ( Miscanthus x giganteus , Gnt10, Gnt43, and Syn55) and agronomic treatments such as plastic mulch film, miscanthus mulch, inoculation with mycorrhizal fungi, and fertilization were tested in two years at both sites in 2021 and 2022. Specific weather conditions and the timing of planting were strong determinants of establishment success and no single treatment combination was found that consistently increased the establishment success. Plastic mulch films were found to hinder rather than help establishment in both these locations. Chipped miscanthus mulch caused nitrogen immobilization and stunted plant growth. At Ihinger Hof the novel seed-based miscanthus hybrid Gnt43 produced twice the biomass of other hybrids (7 t ha −1 ) in the first growing season. Gnt10 yielded well in 2021 and showed impressive tolerance to water stress in the summer of 2022. No treatment combination was found that consistently increased the establishment success of miscanthus hybrids across sites and years. Novel genotypes consistently outperformed the standard commercial miscanthus hybrid Miscanthus x giganteus . Gnt10 may be a promising candidate for the cultivation of water-stress-prone marginal lands, due to its isohydric behavior and high yield potential.
