Hohenheim Center for Livestock Microbiome Research (HoLMiR)
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/17567
Browse
Browsing Hohenheim Center for Livestock Microbiome Research (HoLMiR) by Sustainable Development Goals "9"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication The AnimalAssociatedMetagenomeDB reveals a bias towards livestock and developed countries and blind spots in functional-potential studies of animal-associated microbiomes(2023) Avila Santos, Anderson Paulo; Kabiru Nata’ala, Muhammad; Kasmanas, Jonas Coelho; Bartholomäus, Alexander; Keller-Costa, Tina; Jurburg, Stephanie D.; Tal, Tamara; Camarinha-Silva, Amélia; Saraiva, João Pedro; Ponce de Leon Ferreira de Carvalho, André Carlos; Stadler, Peter F.; Sipoli Sanches, Danilo; Rocha, UlissesBackground: Metagenomic data can shed light on animal-microbiome relationships and the functional potential of these communities. Over the past years, the generation of metagenomics data has increased exponentially, and so has the availability and reusability of data present in public repositories. However, identifying which datasets and associated metadata are available is not straightforward. We created the Animal-Associated Metagenome Metadata Database (AnimalAssociatedMetagenomeDB - AAMDB) to facilitate the identification and reuse of publicly available non-human, animal-associated metagenomic data, and metadata. Further, we used the AAMDB to (i) annotate common and scientific names of the species; (ii) determine the fraction of vertebrates and invertebrates; (iii) study their biogeography; and (iv) specify whether the animals were wild, pets, livestock or used for medical research. Results: We manually selected metagenomes associated with non-human animals from SRA and MG-RAST. Next, we standardized and curated 51 metadata attributes (e.g., host, compartment, geographic coordinates, and country). The AAMDB version 1.0 contains 10,885 metagenomes associated with 165 different species from 65 different countries. From the collected metagenomes, 51.1% were recovered from animals associated with medical research or grown for human consumption (i.e., mice, rats, cattle, pigs, and poultry). Further, we observed an over-representation of animals collected in temperate regions (89.2%) and a lower representation of samples from the polar zones, with only 11 samples in total. The most common genus among invertebrate animals was Trichocerca (rotifers). Conclusion: Our work may guide host species selection in novel animal-associated metagenome research, especially in biodiversity and conservation studies. The data available in our database will allow scientists to perform meta-analyses and test new hypotheses (e.g., host-specificity, strain heterogeneity, and biogeography of animal-associated metagenomes), leveraging existing data. The AAMDB WebApp is a user-friendly interface that is publicly available at https://webapp.ufz.de/aamdb/ .Publication Functionality of the Na+-translocating NADH:quinone oxidoreductase and quinol:fumarate reductase from Prevotella bryantii inferred from homology modeling(2024) Hau, Jann-Louis; Schleicher, Lena; Herdan, Sebastian; Simon, Jörg; Seifert, Jana; Fritz, Günter; Steuber, JuliaMembers of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii , the Na + -translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR . Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.
