Kompetenzzentrum für Biodiversität und integrative Taxonomie (KomBioTa)
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/79
Browse
Browsing Kompetenzzentrum für Biodiversität und integrative Taxonomie (KomBioTa) by Sustainable Development Goals "13"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Publication Competitive hierarchies in bryozoan assemblages mitigate network instability by keeping short and long feedback loops weak(2023) Koch, Franziska; Neutel, Anje-Margriet; Barnes, David K. A.; Tielbӧrger, Katja; Zarfl, Christiane; Allhoff, Korinna T.Competitive hierarchies in diverse ecological communities have long been thought to lead to instability and prevent coexistence. However, system stability has never been tested, and the relation between hierarchy and instability has never been explained in complex competition networks parameterised with data from direct observation. Here we test model stability of 30 multispecies bryozoan assemblages, using estimates of energy loss from observed interference competition to parameterise both the inter- and intraspecific interactions in the competition networks. We find that all competition networks are unstable. However, instability is mitigated considerably by asymmetries in the energy loss rates brought about by hierarchies of strong and weak competitors. This asymmetric organisation results in asymmetries in the interaction strengths, which reduces instability by keeping the weight of short (positive) and longer (positive and negative) feedback loops low. Our results support the idea that interference competition leads to instability and exclusion but demonstrate that this is not because of, but despite, competitive hierarchy.Publication Complex European invasion history of Anoplophora glabripennis (Motschulsky): new insights in its population genomic differentiation using genotype-by-sequencing(2024) Haeussermann, Iris; Hasselmann, Martin; Haeussermann, Iris; Institute of Animal Science, Department of Livestock Population Genomics, Centre for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart, Germany; Hasselmann, Martin; Institute of Animal Science, Department of Livestock Population Genomics, Centre for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart, GermanyAnthropogenic activities like trade facilitate increasing rates of biological invasions. Asian long-horned beetle (ALB), which is naturally distributed in eastern Asia (China, Korean peninsula), was introduced via wood packing materials (WPM) used in trade to North America (1996) and Europe (2001). We used 7810 single nucleotide polymorphisms (SNPs) derived by a genotype-by-sequencing (GBS) approach to decipher the introduction patterns into Europe. This is applied for the first time on European ALB outbreaks from Germany, Switzerland, and Italy, both from still active and already eradicated infestations. The genome-wide SNPs detected signs of small and highly structured populations within Europe, showing clear founder effects. The very high population differentiation is presumably derived from multiple independent introductions to Europe, which are spatially restricted in mating. By admixture and phylogenetic analyses, some cases of secondary dispersal were observed. Furthermore, some populations suggest admixture, which might have been originated by either multiple introductions from different sources into the new sites or recurrent introductions from an admixed source population. Our results confirmed a complex invasion history of the ALB into Europe and the usability of GBS obtained SNPs in invasion science even without source populations.Publication Evolutionary genomics of socially polymorphic populations of Pogonomyrmex californicus(2024) Errbii, Mohammed; Ernst, Ulrich R.; Lajmi, Aparna; Privman, Eyal; Gadau, Jürgen; Schrader, Lukas; Errbii, Mohammed; Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany; Ernst, Ulrich R.; Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany; Lajmi, Aparna; Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel; Privman, Eyal; Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel; Gadau, Jürgen; Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany; Schrader, Lukas; Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, GermanyBackground: Social insects vary considerably in their social organization both between and within species. In the California harvester ant, Pogonomyrmex californicus (Buckley 1867), colonies are commonly founded and headed by a single queen (haplometrosis, primary monogyny). However, in some populations in California (USA), unrelated queens cooperate not only during founding (pleometrosis) but also throughout the life of the colony (primary polygyny). The genetic architecture and evolutionary dynamics of this complex social niche polymorphism (haplometrosis vs pleometrosis) have remained unknown. Results: We provide a first analysis of its genomic basis and evolutionary history using population genomics comparing individuals from a haplometrotic population to those from a pleometrotic population. We discovered a recently evolved (< 200 k years), 8-Mb non-recombining region segregating with the observed social niche polymorphism. This region shares several characteristics with supergenes underlying social polymorphisms in other socially polymorphic ant species. However, we also find remarkable differences from previously described social supergenes. Particularly, four additional genomic regions not in linkage with the supergene show signatures of a selective sweep in the pleometrotic population. Within these regions, we find for example genes crucial for epigenetic regulation via histone modification (chameau) and DNA methylation (Dnmt1). Conclusions: Altogether, our results suggest that social morph in this species is a polygenic trait involving a potential young supergene. Further studies targeting haplo- and pleometrotic individuals from a single population are however required to conclusively resolve whether these genetic differences underlie the alternative social phenotypes or have emerged through genetic drift.Publication Integrative description of Temnothorax siculus sp. n.: a new ant species from Sicily, Italy (Hymenoptera, Formicidae)(2025) Schifani, Enrico; Alicata, Antonio; Prebus, Matthew M.; Csősz, Sándor; Fernández, Fernando; Guerrero, Roberto JoséThe mostly Holarctic genus Temnothorax (Hymenoptera, Formicidae) is the most diverse ant genus in temperate regions. The Mediterranean, a biodiversity hotspot of rare ant species, hosts over 150 Temnothorax taxa, including several short-range endemics. Over the last few years, phylogenomic reconstructions and integrative taxonomy have significantly improved the understanding of global Temnothorax diversity, but much taxonomic work is still needed in the Mediterranean region. Here, we present the integrative description of a new species of the genus, discovered in the central Mediterranean island of Sicily: Temnothorax siculus sp. n. is defined and compared to congeneric species integrating morphometrics and phylogenomics. It is a ground-nesting, lowland species, of which workers were regularly observed foraging on bushes and small trees. In the global phylogeny, covering all the main lineages of the region, it belongs to the Palearctic clade and is related to the tuberum and unifasciatus complexes. Morphological separation from other Sicilian Temnothorax species can generally be achieved on qualitative characters, but we also provide morphometric discriminant functions to separate it from T. apenninicus and especially T. unifasciatus . Temnothorax siculus has been rarely collected but appears to be widespread in Sicily, and may occur in neighboring regions.Publication Rainforest fragmentation decreases the robustness of plant‐frugivore interaction networks(2025) Becker, David; Li, Wande; Gurung, Ashtha; Rodriguez Martinez, Eduardo; Rojas, Emmanuel; Rodríguez‐Herrera, Bernal; Vollstädt, Maximilian G. R.; Grass, Ingo; Hiller, Thomas; Becker, David; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Li, Wande; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Gurung, Ashtha; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Rodriguez Martinez, Eduardo; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Rojas, Emmanuel; Reserva Biológica Tirimbina, Heredia, Costa Rica; Rodríguez‐Herrera, Bernal; Escuela de Biología y Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San José, Costa Rica; Vollstädt, Maximilian G. R.; Instituto Mediterráneo de Estudios Avanzados (CSIC‐UIB), Mallorca, Balearic Islands, Spain; Grass, Ingo; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Hiller, Thomas; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, GermanyTropical rainforests are biodiversity hotspots that provide a variety of ecosystem functions and services. Seed dispersal by fruit‐eating birds is an important ecosystem process in the regeneration of tropical rainforests, which is increasingly threatened by widespread deforestation. In particular, the expansion of agricultural land often leads to forest fragmentation, which can have a negative impact on the interactions between plants and frugivores and thus on seed dispersal. However, little is known about how forest fragmentation affects the structure and robustness of plant–frugivore interaction networks. Here, we examined the effects of forest fragmentation on species richness of frugivorous birds interacting with focal tree species, and the structure and robustness of plant–frugivore interaction networks in the tropical lowland forests of northern Costa Rica. Species richness of frugivorous birds at the forest edges increased with fragment size and forest cover in the surrounding landscape as well as with local fruit availability. Modularity and robustness of plant–frugivore networks increased with enhanced fragment size and forest cover, while network specialization (H2′) increased only with greater forest cover. Additionally, the three common tanager species ( Ramphocelus passerinii , Thraupis palmarum , and Thraupis episcopus ) were identified as key bird species for network functioning by promoting among‐module and within‐module connectivity. Conservation measures should therefore not only focus on threatened specialist species, but more on the key species that enhance network structure and consequently increase the robustness of these trophic interaction networks. Ultimately, our study demonstrates that tropical forest fragmentation simplifies network structure, making these interactions more vulnerable to anthropogenic disturbances.Publication Trade‐offs among restored ecosystem functions are context‐dependent in Mediterranean‐type regions(2025) Fiedler, Sebastian; Perring, Michael P.; Monteiro, José A.; Branquinho, Cristina; Buzhdygan, Oksana; Cavieres, Lohengrin A.; Cleland, Elsa E.; Cortina‐Segarra, Jordi; Grünzweig, José M.; Holm, Jennifer A.; Irob, Katja; Keenan, Trevor F.; Köbel, Melanie; Maestre, Fernando T.; Pagel, Jörn; Rodríguez‐Ramírez, Natalia; Ruiz‐Benito, Paloma; Schurr, Frank M.; Sheffer, Efrat; Valencia, Enrique; Tietjen, Britta; Fiedler, Sebastian; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, Germany; Perring, Michael P.; UKCEH (UK Centre for Ecology and Hydrology), Environment Centre Wales, Bangor, UK; Monteiro, José A.; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, Germany; Branquinho, Cristina; cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Buzhdygan, Oksana; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, Germany; Cavieres, Lohengrin A.; Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción and Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cleland, Elsa E.; Ecology, Behavior & Evolution Department, University of California, San Diego, La Jolla, CA, USA; Cortina‐Segarra, Jordi; Department of Ecology and IMEM, University of Alicante, Alicante, Spain; Grünzweig, José M.; Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel; Holm, Jennifer A.; Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Irob, Katja; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, Germany; Keenan, Trevor F.; Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Köbel, Melanie; cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Maestre, Fernando T.; Environmental Sciences and Engineering, Biological and Environmental Science and Engineering 34 Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia; Pagel, Jörn; Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany; Rodríguez‐Ramírez, Natalia; IMBE, Aix Marseille Université, Avignon Université, Marseille, France; Ruiz‐Benito, Paloma; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Alcalá de Henares, Spain; Schurr, Frank M.; Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany; Sheffer, Efrat; Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel; Valencia, Enrique; Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain; Tietjen, Britta; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, GermanyGlobal biodiversity hotspots, including Mediterranean‐type ecosystems worldwide, are highly threatened by global change that alters biodiversity, ecosystem functions, and services. Some restoration activities enhance ecosystem functions by reintroducing plant species based on known relationships between plant traits and ecosystem processes. Achieving multiple functions across different site conditions, however, requires understanding how abiotic factors like climate and soil, along with plant assemblages, influence ecosystem functions, including their trade‐offs and synergies. We used the ModEST ecosystem simulation model, which integrates carbon, water, and nutrient processes with plant traits, to assess the relationships between restored plant assemblages and ecosystem functions in Mediterranean‐type climates and soils. We investigated whether maximised carbon increment, water use efficiency, and nitrogen use efficiency, along with their trade‐offs and synergies, varied across different abiotic contexts. Further, we asked whether assemblages that maximised functions varied across environments and among these functions. We found that maximised ecosystem carbon increment and nitrogen use efficiency occurred under moist, warm conditions, while water use efficiency peaked under drier conditions. Generally, the assemblage that maximised one function differed from those for other maximised functions. Synergies were rare, except between water and nitrogen use efficiencies in loam soils across most climates. Trade‐offs among maximised functions were common, varying in strength with abiotic context and plant assemblages, and were more pronounced in sandy loam soils compared to clay‐rich soils. Our findings suggest that due to variation in abiotic conditions within and across Mediterranean‐type regions at the global scale, site‐specific plant assemblages are required to maximise ecosystem functions. Thus, lessons from a single site cannot be transferred to another site, even where the same plant functional types are available for restoration. Our simulation results offer valuable insights into potential ecosystem performance under specific abiotic conditions following restoration with particular plant functional types, thereby informing local restoration efforts.
