Sondersammlungen
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/7011
Browse
Browsing Sondersammlungen by Sustainable Development Goals "12"
Now showing 1 - 20 of 38
- Results Per Page
- Sort Options
Publication Animal welfare in non-anthropocentric cost-benefit analysis and social welfare functions: a critical review to guide practical application(2025) Dusel, Sara; Wieck, ChristineCost-benefit analysis and social welfare functions are two closely related methods to evaluate policy impacts. In this critical review, we present the state of knowledge on how to include the animals’ (non-anthropocentric) perspective in these policy evaluations. For this, we synthesize material from the scientific and grey literature and develop a checklist that guides through the process of non-anthropocentric cost-benefit analysis and social welfare functions. Step-by-step, the checklist gives an overview of the alternative options and normative assumptions in the literature and points to remaining research gaps.Publication Bioaccessibility and anti-inflammatory activity in Caco-2 cells of phytochemicals from industrial by-products of coffee (Coffea arabica L.)(2025) Jiménez-Gutiérrez, Milena; Zielinski, Christian; Esquivel, Patricia; Frank, Jan; Irías-Mata, Andrea; Jiménez-Aspee, FelipeCoffee by-products are rich in nutrients and bioactive compounds in free soluble form and bound to cell wall components. These compounds undergo chemical changes during gastrointestinal digestion, affecting their bioaccessibility and bioactivity. This study is the first to investigate coffee by-products from industrial wet processing to evaluate the impact of simulated gastrointestinal digestion on their phytochemical composition and subsequent anti-inflammatory activity in Caco-2 cells. Digestion significantly reduced the stability and solubility of main compounds; however, digested bioaccessible by-products still exhibited anti-inflammatory properties, reducing IL-6, IL-8, and TNF-α levels. Correlation analysis identified rutin, quercetin-3-glycoside, caffeine and 5-caffeoylquinic acid as strongly linked to cytokine suppression, suggesting key roles and possible synergies. These results highlight the potential of coffee by-products as functional ingredients targeting intestinal inflammation. Future work should confirm in vivo efficacy, optimize extraction at scale, and address regulatory requirements to support industrial application and promote circular economy benefits.Publication Can market fragmentation explain the limited success of political attempts to promote grain legume cultivation in Germany?(2025) Mittag, Franziska; Hess, SebastianGrain legumes, such as field peas, field beans, sweet lupins and soybeans, are known to increase biodiversity within the appropriate crop rotation and are an important source of import-substituting feed protein. National and regional policy schemes have long tried to support the cultivation of grain legumes. Although many regions in Germany offer favourable conditions for grain legumes, previous subsidy schemes have failed to increase the area under cultivation and farmers report a lack of market incentives. Indeed, the available price data exhibit a substantial share of non-random missing values in weeks when grain legumes were not traded. We analyse these non-price periods using cointegration tests and single-hurdle Tobit models. The results indicate that regional price formation for grain legumes in German regions depends not only on a minimum quantity of the respective legume crop in supply but also on a favourable supra-regional soybean price: Regional grain legume markets are not integrated and show evidence of a fragmented market structure. This may explain why local grain legume value chains have failed to emerge in Germany, despite decades of policy attempts to support these crops.Publication The chicken gut microbiome in conventional and alternative production systems(2025) Cheng, Yu-Chieh; Krieger, Margret; Korves, Anna-Maria; Camarinha‑Silva, AméliaThe poultry gut microbiome plays a key role in nutrient digestion, immune function, and overall health. Differences among various farming systems, including conventional, antibiotic-free, free-range, and organic systems, influence microbial composition and function through variations in diet, genetic selection, environmental exposure, and antibiotic use. Conventional systems typically rely on formulated diets and controlled housing conditions, often with routine antimicrobial use. In contrast, organic systems emphasize natural feed ingredients, including roughage, outdoor access, and strict limitations on the use of antibiotics. These divergent practices shape the gut microbiota differently, with organic systems generally associated with greater exposure to environmental microbes and, consequently, greater microbial diversity. However, the implications of this increased diversity for poultry health and performance are complex, as organic systems may also carry a higher risk of pathogen exposure. This review summarizes current findings on the chicken gut microbiome across conventional and alternative production systems (antibiotic-free, free-range, and organic), focusing on microbial diversity, functional potential, and disease resilience. The need for standardized methodologies and consistent nomenclature in microbiome research is also discussed to improve comparability across studies. Understanding how production systems influence the gut microbiota is essential for improving poultry health and productivity while addressing challenges related to antimicrobial resistance and sustainable farming practices.Publication Coffee berry borer control, but not coffee yield, is mediated by non-additive interaction between birds and ants across different cultivation systems(2026) Cardona Tejada, Damaris A.; Parra, Juan L.; Grass, Ingo; Schurr, Frank M.Coffee is one of the most traded tropical crops, cultivated in some of the most biodiverse regions on the planet. Coffee production can be seriously reduced by the coffee berry borer (CBB), a specialized beetle that feeds on the endosperm of coffee berries. Given the CBB's economic relevance, coffee-producing countries have developed extensive Integrated Pest Management programs. Nonetheless, most of these programs fail to incorporate CBB control by natural enemies such as birds and ants. While the effects of birds and ants on CBB suppression have been demonstrated to be positive when studied in isolation, their interactive effects have been little studied. To better understand the effects of the trophic interaction between birds and ants on CBB control, we conducted a full-factorial block experiment excluding birds and ants from coffee shrubs. We distributed 49 experimental blocks across three different coffee systems in a Colombian landscape: sun-exposed coffee, coffee-plantain intercropping, and shade coffee. We found birds to be key control agents of CBB: in the presence of ants, bird exclusion increased CBB infestation by 36 %. However, in the absence of ants, birds had little effect on CBB infestation, demonstrating that the effects of birds and ants were non-additive. This suggests that birds control CBB through a trophic cascade mediated by ants. We also found that the effects of exclusions were modified by the cultivation system, with the shade coffee system consistently reducing CBB infestation. Our experiment demonstrates that crop diversification is an effective measure for integrating local enemies into IPM strategies. Nonetheless, we acknowledge that trophic interactions are highly complex and exhibit a context-dependency that can result in the suppression of biological pest control. Therefore, we recommend conducting future analysis on evaluating the effects of predator´s community composition to encourage the development of IPM programs that leverage biodiversity in agroecosystems.Publication Effect of liquefaction temperature and enzymatic treatment on bioethanol production from mixed waste baked products(2025) Almuhammad, Mervat; Kölling, Ralf; Einfalt, DanielThis study investigates the effect of different liquefaction temperatures (50–70 °C) and four commercial enzyme formulations on glucose release and subsequent ethanol yield, using mixed waste baked products as a substrate. Among the enzymes tested, Amylase GA 500 proved to be superior in the hydrolysis of starch at lower temperatures (50 °C and 55°C). At higher liquefaction temperatures (65 °C and 70°C) all four enzyme preparations showed comparable activity. The highest glucose concentration (205.7 g/L) and the highest ethanol yield (92 g/L) were achieved with Amylase GA 500 at 65 °C. Its superior performance is attributed to the synergistic activity of α-amylase and glucoamylase, which facilitates efficient starch hydrolysis. Crucially, we discovered that the liquefaction temperature profoundly affects fermentation speed independently of the initial glucose concentration or the enzyme preparation used for starch hydrolysis. This novel mechanistic insight suggests that higher temperature treatment either makes an additional factor crucial for yeast fermentation available or depletes/destroys an inhibitor present in the complex waste bakery product matrix. These findings highlight the critical role of temperature and enzyme formulation in optimizing bioethanol production from bakery waste, supporting the development of more sustainable and efficient waste-to-biofuel processes.Publication Effects of Prosopis juliflora pods on sheep performance and carcass traits, and their methane mitigation potential as assessed in vitro(2025) Tadesse, Assefa; Titze, Natascha; Rodehutscord, Markus; Melesse, AberraThis study aimed to assess the effect of partial substitution of concentrate mix (CM) with Prosopis juliflora pod (PJP) on growth performance and carcass traits in sheep, and its potential to reduce methane (CH4) production in vitro. A total of 25 yearling rams with an initial body weight of 15.8±1.53 kg was randomly assigned to five treatment diets. The diets were a control diet (JP0) and JP0 replaced with PJP at the level of 5% (JP5), 10% (JP10), 15% (JP15), and 20% (JP20). Data were collected on feed intake, body weight, and carcass characteristics. Methane production was determined from 24 h in vitro gas production. The substitution of CM with PJP did not affect feed intake, body weight, weight gain, feed efficiency, and carcass traits (p>0.05). The in vitro CH4 production was reduced (p<0.001) in diets containing increased levels of PJP. The metabolizable energy for JP10, JP15 and JP20 diets was 11.9, 11.6 and 11.5 MJ/kg DM, respectively (p>0.05). In conclusion, replacing CM with PJP did not negatively affect growth performance and carcass characteristics and could be used as potential supplement to mitigate methane emissions. Further in vivo studies involving respiration chambers are recommended to investigate the CH4 reduction potential of PJP.Publication Enabling adaptive food monitoring through sampling rate adaptation for efficient, reliable critical event detection(2025) Jox, Dana; Schweizer, Pia; Henrichs, Elia; Krupitzer, Christian; Jox, Dana; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Schweizer, Pia; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Niu, Jianwei; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Niu, JianweiMonitoring systems are essential in many fields, such as food production, storage, and supply, to collect information about applications or their environments to enable decision-making. However, these systems generate massive amounts of data that require substantial processing. To improve data analysis efficiency and reduce data collectors’ energy demand, adaptive monitoring is a promising approach to reduce the gathered data while ensuring the monitoring of critical events. Adaptive monitoring is a system’s ability to adjust its monitoring activity during runtime in response to internal and external changes. This work investigates the application of adaptive monitoring—especially, the adaptation of the sensor sampling rate—in dynamic and unstable environments. This work evaluates 11 distinct approaches, based on threshold determination, statistical analysis techniques, and optimization methods, encompassing 33 customized implementations, regarding their data reduction extent and identification of critical events. Furthermore, analyses of Shannon’s entropy and the oscillation behavior allow for estimating the efficiency of the adaptation algorithms. The results demonstrate the applicability of adaptive monitoring in food storage environments, such as cold storage rooms and transportation containers, but also reveal differences in the approaches’ performance. Generally, some approaches achieve high observation accuracies while significantly reducing the data collected by adapting efficiently.Publication Expression of fibroblast growth factor 23 (FGF23) and αKlotho in two commercial laying hen strains fed with and without dietary mineral P supplements before and after the onset of the laying phase(2025) Meier, Leonie; Wallauch, Nadine; Feger, Martina; Oster, Michael; Sommerfeld, Vera; Schmucker, Sonja; Wimmers, Klaus; Huber, Korinna; Stefanski, Volker; Rodehutscord, Markus; Föller, MichaelMaintenance of phosphate homeostasis is particularly critical in laying hens for bone formation and calcium mobilization. The supplementation of their feed with mineral phosphate is common although recent research questions the usual levels of supplementation. Phosphate homeostasis is classically regulated by active vitamin D (calcitriol) and parathyroid hormone, whereas fibroblast growth factor 23 (FGF23) and its co-receptor αKlotho are novel factors. FGF23 has emerged as an important disease biomarker and αKlotho as an anti-aging factor in mammals, however, little is known about their role in poultry. Here, we studied FGF23 and αKlotho expression in two commercial laying hen strains under conditions of dietary mineral phosphorus renunciation and sufficient phosphorus supply. Fifteen- and 20-week-old Lohmann Brown-Classic (LB) or LSL-Classic (LSL) hens were fed a standard maize-soybean-based diet containing 0 or 1 g/kg additional mineral phosphorus for 4 weeks. The animals were sacrificed, and gene expression studied in different organs by quantitative real-time PCR and protein expression by western blotting. Statistical correlation with further parameters of mineral metabolism was analyzed by Pearson’s correlation coefficient or Spearman’s Rho. As a result, FGF23 bone expression was significantly lower and hepatic FGF23 expression higher in 24-week-old than in 19-week-old hens. Bone, hepatic, and renal αKlotho expression was significantly higher in older than younger animals. Compared to LB hens, LSL hens exhibited higher hepatic αKlotho irrespective of diet and age. Dietary phosphorus content did not significantly affect FGF23 and αKlotho expression. Bone FGF23 expression was positively and hepatic FGF23 negatively associated with plasma phosphate concentration whereas bone FGF23 expression was negatively and hepatic FGF23 positively associated with plasma calcitriol concentration. To conclude, we uncovered a strong impact of age and strain on FGF23 and αKlotho expression in two high performance laying hen strains, effects possibly associated with initiation of the egg-laying phase. Moreover, the regulation of hepatic FGF23 expression differed from the regulation of bone FGF23 expression. Further studies are needed to elucidate the physiological relevance.Publication From coffee waste to wastewater treatment: optimization of hydrothermal carbonization and H₃PO₄ activation for Cr(VI) adsorption(2026) Piccoli Miranda de Freitas, Caroline; De Freitas Batista, Gabriel; Dalmolin da Silva, Mariele; Checa Gomez, Manuel; Arauzo, Pablo J.; França da Cunha, Fernando; Kruse, AndreaSpent coffee grounds (SCG) are an abundant agro-industrial waste, and their valorization as activated carbon (AC) offers a sustainable approach for wastewater treatment and heavy-metal remediation. However, the high energy demand of SCG activation limits large-scale application. Hydrothermal carbonization (HTC) reduces energy consumption and enhances material properties. This study evaluated the performance of activated carbon (AC) derived from SCG via HTC, followed by H₃PO₄ activation for Cr(VI) removal, and compared it with non-activated carbon obtained by HTC and pyrolysis. The results highlight the effect of chemical activation on enhancing surface area, porosity, and adsorption efficiency. The predicted optimal IN was 1624.7 mg·g⁻¹, closely matching the experimental value of 1640.1 ± 15.5 mg·g⁻¹, achieved at 426 °C, 92 min, and a hydrochar-to-H₃PO₄ ratio of 1:1.6. The optimized AC exhibited a maximum adsorption capacity (Qₑ) of 33 ± 1.1 mg·g⁻¹ and 99.4 ± 0.1 % Cr(VI) removal under pH 2, 25 mg·L⁻¹ initial concentration, and 2 g·L⁻¹ adsorbent dose. In contrast, the non-activated carbon presented a lower iodine number (1411 ± 70 mg·g⁻¹) and inferior adsorption performance, confirming the key role of H₃PO₄ activation in improving surface reactivity and adsorption sites. Chemical activation proved essential for improving Cr(VI) adsorption, with the H₃PO₄-AC exhibiting the highest capacity. These results demonstrate the potential of SCG-derived AC as a low-cost adsorbent for heavy-metal-rich industrial effluents, supporting circular economy strategies.Publication Historic insights and future potential in wheat elaborated using a diverse cultivars collection and extended phenotyping(2025) El Hassouni, Khaoula; Afzal, Muhammad; Boeven, Philipp H. G.; Dornte, Jost; Koch, Michael; Pfeiffer, Nina; Pfleger, Franz; Rapp, Matthias; Schacht, Johannes; Spiller, Monika; Sielaff, Malte; Tenzer, Stefan; Thorwarth, Patrick; Longin, C. Friedrich H.Wheat is one of the most important staple crops worldwide. Wheat breeding mainly focused on improving agronomy and techno-functionality for bread or pasta production, but nutrient content is becoming more important to fight malnutrition. We therefore investigated 282 bread wheat cultivars from seven decades of wheat breeding in Central Europe on 63 different traits related to agronomy, quality and nutrients in multiple field environments. Our results showed that wheat breeding has tremendously increased grain yield, resistance against diseases and lodging as well as baking quality across last decades. By contrast, mineral content slightly decreased without selection on it, probably due to its negative correlation with grain yield. The significant genetic variances determined for almost all traits show the potential for further improvement but significant negative correlations among grain yield and baking quality as well as grain yield and mineral content complicate their combined improvement. Thus, compromises in improvement of these traits are necessary to feed a growing global population.Publication Identifying governance challenges in scaling biofortification programs and the potential of training: a case study of Uganda(2025) Alioma, Richard; Zeller, Manfred; Birner, Regina; Bosch, Christine; Muayahoto, Bho; Zeller, Manfred; Department of Rural Development Theory and Policy, Hohenheim University, Stuttgart, Germany; Birner, Regina; Department of Social and Institutional Change in Agricultural Development, Hohenheim University, Stuttgart, Germany; Bosch, Christine; Department of Social and Institutional Change in Agricultural Development, Hohenheim University, Stuttgart, Germany; Muayahoto, Bho; HarvestPlus, International Food Policy Research Institute, Washington, DC, United StatesIntroduction: Biofortification initiatives can significantly help reduce micronutrient deficiencies in developing countries. However, when hidden hunger affects a large segment of the population, large-scale implementation is necessary to achieve the desired results. We aimed to identify governance challenges in biofortification, and potential remedies based on a conceptual framework that considers low demand and the invisible nature of micronutrient traits in crops. Methods: Using process net maps and quantitative methods, this paper explores how farmer training can address governance issues. Results: Results show that, in addition to common agricultural marketing issues, sweet potato vine multipliers struggle with vine supply, value chain actors adulterate iron beans, and consumers are hesitant to pay higher prices for biofortified crops. These problems may result from information asymmetry, merit goods, collective action issues, and free riding. Furthermore, training had little impact on reducing the governance challenge arising from information asymmetry. Discussion/conclusion: One of the key solutions was investing in subsidies to increase production and raise awareness of the importance of nutritious foods. With governance problems, there is a need to take them into consideration when planning and expanding biofortification programs.Publication Influence of low oxygen concentrations on color stability of modified atmosphere packaged beef(2026) Krell, Johannes; Aeckerle, Luis; Poveda-Arteaga, Alejandro; Weiss, Jochen; Terjung, Nino; Gibis, MonikaThe influence of low oxygen concentrations on the development of color and the myoglobin redox states over storage time was analyzed, to determine whether there are conditions that increase discoloration. Beef slices were packaged in atmospheres containing nitrogen gas and 0 %, 0.5 %, 1 %, 1.5 %, 3 %, and 5 % of oxygen. The samples were stored at 2 °C for 14 days. During storage, color, reflectance and oxygen concentration were measured optically through the packaging. The color difference ΔE2000 and the relative oxymyoglobin (OMb), deoxymyoglobin (DMb), and metmyoglobin (MMb) levels were calculated. After 14 days, the oxygen concentrations changed to 0.09 % (0 %), 0.36 % (0.5 %), 0.92 % (1 %), 1.28 % (1.5 %) 2.55 % (3 %), and 4.29 % (5 %). Regarding MMb formation, the 0 % samples (ΔMMb0–14d 11.1 %) were significantly (p < 0.05) more stable compared to the other samples, which showed an increase of MMb formation with rising oxygen concentration after 14 days. The other samples reached a ΔMMb0–14d increase of 21.1 % (0.5 %), 26.7 % (1 %), 30.0 % (1.5 %), 31.1 % (3 %), and 34.4 % (5 %). The color stability showed significantly (p < 0.05) increasing ΔE values of 2.49 (0 %), 3.39 (0.5 %), 4.66 (1 %), 5.14 (1.5 %), 6.03 (3 %), and 7.34 (5 %) with rising oxygen contents. These findings suggest that to ensure the color stability of beef with minimal MMb formation, it is important to completely exclude oxygen from the packages, since the destabilizing effect of oxygen already started at 0.5 %. The non-invasive measurement of the oxygen concentration and the reflectance data over 14 days gave new insights into the discoloration process of beef stored in low-oxygen atmospheres.Publication Iron partitioning and photosynthetic performance in Cannabis sativa L. reveal limitations of nanoscale zero-valent iron as a fertilizer(2025) Büser, Christian; Hartung, Jens; Deurin, Lukas; Graeff-Hönninger, SimoneIron (Fe) is the fourth most abundant element in the Earth’s crust but remains the third most limiting nutrient for crop productivity due to its low solubility in most soils. The emergence of nanotechnology has introduced nanoscale zero-valent iron (nZVI) as a potential Fe fertilizer with high surface reactivity and improved bioavailability. However, its comparative efficacy relative to conventional chelated Fe sources remains poorly understood. This study investigated Fe partitioning, photosynthetic efficiency, biomass accumulation, and cannabinoid synthesis in Cannabis sativa L. grown hydroponically under Fe-EDTA, nZVI, or Fe-deficient (-Fe) treatments. Total Fe concentrations were markedly reduced in -Fe plants compared with both Fe-EDTA and nZVI treatments. Despite similar root Fe contents between Fe-EDTA and nZVI, only Fe-EDTA facilitated efficient translocation to shoots, while nZVI-derived Fe predominantly accumulated in roots. Consequently, nZVI-treated plants exhibited intermediate photosynthetic performance and water-use efficiency—lower than Fe-EDTA but significantly higher than -Fe. Although Fe translocation differed substantially, inflorescence biomass and cannabinoid yield were comparable between nZVI and Fe-EDTA treatments, both exceeding those of -Fe plants. These results suggest that yield reductions under Fe deficiency arise not solely from Fe scarcity but also from the metabolic costs of Strategy I Fe acquisition, which are partially circumvented by root Fe availability from nZVI. Overall, Fe-EDTA demonstrated superior nutrient use efficiency, whereas nZVI partially alleviated Fe deficiency and revealed distinctive interactions between nanomaterials and plant Fe physiology. This study advances understanding of nZVI as an alternative Fe source in C. sativa and provides new insights into nanoparticle–plant nutrient dynamics.Publication Leveraging regionally sourced natural fibers for coreless filament winding in sustainable construction(2026) Rossa, Alina J.; Bozó, Daniel Christopher; Mindermann, Pascal; Gresser, Götz T.; Schuenemann, FranziskaThis study investigates the potential of regionally sourced natural fibers (NF) as sustainable feedstocks for coreless filament winding (CFW), an innovative and resource-efficient composite fabrication method for construction. As the sector moves towards bio-based materials, flax has emerged as a benchmark due to its compatibility with CFW and favorable mechanical properties. However, supply chain vulnerabilities and price volatility highlight the need for regional alternatives to flax fibers. By assessing hemp, miscanthus, lavender, nettle and wheat straw cultivated in Baden-Württemberg (BW), this paper links crop sustainability and fiber suitability with the broader aim of strengthening local biomass utilization within the bioeconomy. A multi-stage evaluation framework compares environmental, economic, social, and technical indicators against flax, focusing on biomass availability, input intensity, ecosystem services, land-use competition, and fiber properties. The results identify hemp as the most promising alternative due to its high fiber output, low cultivation inputs, beneficial ecosystem services and mechanical performance. Nettle offers strong mechanical performance but faces agronomic limitations, while lavender presents niche potential under integrated production systems. Miscanthus and wheat straw, while unsuitable for direct CFW due to fiber morphology, may serve as supplementary feedstocks through modified processing. These findings underscore the role of local biomass streams in creating robust regional value chains, contributing to the resilience and sustainability of the bioeconomy. While the focus of this study is on BW, the framework can be transferred to other regions and may serve as a practical tool for policy, industry, and research seeking to advance circular approaches in bio-based construction.Publication Limitations of soil-applied non-microbial and microbial biostimulants in enhancing soil P turnover and recycled P fertilizer utilization: A study with and without plants(2024) Herrmann, Michelle Natalie; Griffin, Lydia Grace; John, Rebecca; Mosquera-Rodríguez, Sergio F.; Nkebiwe, Peteh Mehdi; Chen, Xinping; Yang, Huaiyu; Müller, TorstenIntroduction: Phosphorus recovery from waste streams is a global concern due to open nutrient cycles. However, the reliability and efficiency of recycled P fertilizers are often low. Biostimulants (BS), as a potential enhancer of P availability in soil, could help to overcome current barriers using recycled P fertilizers. For this, a deeper understanding of the influence of BSs on soil P turnover and the interaction of BSs with plants is needed. Methods: We conducted an incubation and a pot trial with maize in which we testednon-microbial (humic acids and plant extracts) and microbial BSs (microbial consortia) in combination with two recycled fertilizers for their impact on soil P turnover, plant available P, and plant growth. Results and discussion: BSs could not stimulate P turnover processes (phosphatase activity, microbial biomass P) and had a minor impact on calcium acetate-lactate extractable P (CAL-P) in the incubation trial. Even though stimulation of microbial P turnover by the microbial consortium and humic acids in combination with the sewage sludge ash could be identified in the plant trial with maize, this was not reflected in the plant performance and soil P turnover processes. Concerning the recycled P fertilizers, the CAL-P content in soil was not a reliable predictor of plant performance with both products resulting in competitive plant growth and P uptake. While this study questions the reliability of BSs, it also highlights the necessity toimprove our understanding and distinguish the mechanisms of P mobilization in soil and the stimulation of plant P acquisition to optimize future usage.Publication Mapping genes for resilient dairy cows by means of across-breed genome-wide association analysis(2025) Keßler, Franziska; Zölch, Maximilian; Wellman, Robin; Bennewitz, JörnBackground: Indicator traits based on variance and autocorrelation of longitudinal data are increasingly used to measure resilience in animal breeding. While these traits show promising heritability and can be routinely collected, their genetic architecture remains poorly understood. We conducted GWAS for three resilience indicators across German Holstein ( n = 2,300), Fleckvieh ( n = 2,330), and Brown Swiss ( n = 1,073) dairy cattle ( Bos Taurus ) populations. The indicators included variance ( ) and autocorrelation ( ) of deviations of observed from predicted daily milk yield and variance of relative daily milk yield ( ). Additionally, we analysed a selection index combining these traits. Prior to GWAS, we examined population structure through multi-dimensional scaling (MDS) and LD patterns, revealing distinct genetic clusters for each breed and similar LD decay patterns. Results: The GWAS results confirmed the polygenic nature of resilience, with multiple genomic regions showing significant associations. Notable signals were detected on BTA5 ( ), BTA14 ( ), BTA2 and BTA8 ( ) for single indicator traits. For selection index resilience, strong suggestive SNPs are located on BTA4 , BTA16 , BTA21 , and BTA27 . Detected regions overlapped with previously reported QTLs for performance, reproduction, longevity and health, providing new insights into the biological pathways underlying dairy cattle resilience. Conclusions: Our findings demonstrate that resilience indicators have a complex genetic architecture with both breed-specific and shared components, supporting their potential use in selective breeding programs while highlighting the importance of careful trait definition.Publication Microbial inoculants modulate the rhizosphere microbiome, alleviate plant stress responses, and enhance maize growth at field scale(2025) Francioli, Davide; Kampouris, Ioannis D.; Kuhl-Nagel, Theresa; Babin, Doreen; Sommermann, Loreen; Behr, Jan H.; Chowdhury, Soumitra Paul; Zrenner, Rita; Moradtalab, Narges; Schloter, Michael; Geistlinger, Joerg; Ludewig, Uwe; Neumann, Günter; Smalla, Kornelia; Grosch, RitaBackground: Field inoculation of crops with beneficial microbes is a promising sustainable strategy to enhance plant fitness and nutrient acquisition. However, effectiveness can vary due to environmental factors, microbial competition, and methodological challenges, while their precise modes of action remain uncertain. This underscores the need for further research to optimize inoculation strategies for consistent agricultural benefits. Results: Using a comprehensive, multidisciplinary approach, we investigate the effects of a consortium of beneficial microbes (BMc) ( Pseudomonas sp. RU47, Bacillus atrophaeus ABi03, Trichoderma harzianum OMG16) on maize ( Zea mays cv. Benedictio) through an inoculation experiment conducted within a long-term field trial across intensive and extensive farming practices. Additionally, an unexpected early drought stress emerged as a climatic variable, offering further insight into the effectiveness of the microbial consortium. Our findings demonstrate that BMc root inoculation primarily enhanced plant growth and fitness, particularly by increasing iron uptake, which is crucial for drought adaptation. Inoculated maize plants show improved shoot growth and fitness compared to non-inoculated plants, regardless of farming practices. Specifically, BMc modulate plant hormonal balance, enhance the detoxification of reactive oxygen species, and increase root exudation of iron-chelating metabolites. Amplicon sequencing reveals shifts in rhizosphere bacterial and fungal communities mediated by the consortium. Metagenomic shotgun sequencing indicates enrichment of genes related to antimicrobial lipopeptides and siderophores. Conclusions: Our findings highlight the multifaceted benefits of BMc inoculation on plant fitness, significantly influencing metabolism, stress responses, and the rhizosphere microbiome. These improvements are crucial for advancing sustainable agricultural practices by enhancing plant resilience and productivity.Publication Microbiota responses to feed particle size, calcium concentration, and phytase supplementation in broiler chickens(2026) Rubio-Cervantes, Ismael; Wolfrum, Stephanie; Siegert, Wolfgang; Rodehutscord, Markus; Camarinha-Silva, AméliaThis research aimed to investigate the modulation of broiler-chickens gut microbiota by dietary particle size (PS), exogenous phytase, and calcium (Ca) concentration. Eight experimental diets varied in PS (fine 222 µm (PF) and coarse 309 µm (PC)), Ca concentration (4.9 and 7.2 g/kg), and exogenous phytase (0 and 1000 FTU/kg). A total of 560 Ross 308 broiler chickens were allocated to 56 metabolism units at 7 days of age and randomly assigned to each diet (7 replicates per treatment). On days 22 and 23, the birds were slaughtered, and the digesta from the gizzard, ileum, and ceca were sampled and pooled on a metabolism unit basis. DNA extraction was followed by 16S rRNA gene amplicon sequencing. Thirteen amplicon sequence variants (ASV) were present across the gizzard, ileum, and ceca, most of which were assigned to Limosilactobacillus and represented a substantial share of the total relative abundance in each section, 86 % in the gizzard, 88 % in the ileum, and 30 % in the ceca. Six of these L. reuteri ASVs were significantly enriched by coarse particle feeding, suggesting strain-specific adaptation to enhanced phosphorus availability. In the ileum, Candidatus arthromitus (p < 0.001) and Rombustia (p < 0.05) showed a significant increase in relative abundance in PC compared to PF. Phytase supplementation reduced the relative abundance of Lactobacillus and Streptococcus (p < 0.05), while higher Ca concentration decreased that of C. arthromitus (p < 0.05). In the ceca, increases in the relative abundance of Anaerostipes (p < 0.05) and Clostridia vadin BB60 were found for PC diets compared to PF (p < 0.001). The addition of phytase and Ca also significantly affected several genera, albeit the variations were less than 1 %. Dietary PS, exogenous phytase, and Ca concentration modulated the gut microbiota, specifically influencing the abundance of key microorganisms like Candidatus arthromitus, Anaerostipes, and Clostridia vadin BB60, involved in phosphorus metabolism and overall broiler chickens' health.Publication Miscanthus‐derived products for material applications: can they contribute to greenhouse gas emission mitigation?(2025) Lask, Jan; Weik, Jan; Kiesel, Andreas; Lewandowski, Iris; Wagner, Moritz; Lask, Jan; Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Weik, Jan; Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Kiesel, Andreas; Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Lewandowski, Iris; Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Wagner, Moritz; Institute of Applied Ecology, Geisenheim University, Geisenheim, GermanyMiscanthus is a particularly promising lignocellulosic biomass as it can also grow under marginal conditions and can be used for a wide range of products including energy and material applications. The latter, including applications in the construction, textile, chemical, or agricultural sector, is becoming increasingly relevant today. In general, it is hypothesised that biobased products are advantageous in terms of their greenhouse gas (GHG) performance when compared to conventional—in particular fossil—alternatives. To investigate this, the life cycle assessment methodology is typically applied. However, assessments are subject to uncertainty and variability due to assumptions and methodological choices. Given the increasing interest in miscanthus‐derived material applications, this study aims to draw more general conclusions about their GHG performance and relative mitigation potential. This should support a better understanding of their contribution to climate change mitigation objectives and guide the selection of promising products or product groups. A systematic review of peer‐reviewed literature was conducted. In total, 20 studies reporting on 188 comparisons of the GHG performance of miscanthus‐derived and alternative products were assessed. Most comparisons indicated potential GHG mitigation through miscanthus‐derived products, with the majority ranging between 20% and 100% savings. Key parameters defining the relative performance include the selection of the reference product, consideration of soil carbon changes, changes in product and process design, as well as the incorporation of indirect Land Use Change (iLUC) impacts. Overall, we conclude that miscanthus‐derived material applications have the potential to contribute to GHG emission mitigation if iLUC effects are minimised. Given the limited availability of agricultural land, miscanthus‐derived products with high absolute GHG mitigation potential per unit of biomass used and long product lifetime are preferable. For future development, potential environmental trade‐offs need to be monitored.
