Institut für Biologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/81
Browse
Browsing Institut für Biologie by Sustainable Development Goals "13"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Decoding the geography of natural TBEV microfoci in German: a geostatistical approach based on land-use patterns and climatological conditions(2022) Borde, Johannes P.; Glaser, Rüdiger; Braun, Klaus; Riach, Nils; Hologa, Rafael; Kaier, Klaus; Chitimia-Dobler, Lidia; Dobler, GerhardBackground: Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model. Methods: We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher’s Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany. Results: The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%). Conclusions: Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.Publication Integrative description of Temnothorax siculus sp. n.: a new ant species from Sicily, Italy (Hymenoptera, Formicidae)(2025) Schifani, Enrico; Alicata, Antonio; Prebus, Matthew M.; Csősz, Sándor; Schifani, Enrico; Department of Chemistry, Environmental Sustainability, and Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; Alicata, Antonio; Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;; Prebus, Matthew M.; Social Insect Research Group, School of Life Sciences, Arizona State University, 550 E Orange St., Tempe, AZ 85281, USA;; Csősz, Sándor; HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter ave 1/C, 1117 Budapest, Hungary; Fernández, Fernando; Guerrero, Roberto JoséThe mostly Holarctic genus Temnothorax (Hymenoptera, Formicidae) is the most diverse ant genus in temperate regions. The Mediterranean, a biodiversity hotspot of rare ant species, hosts over 150 Temnothorax taxa, including several short-range endemics. Over the last few years, phylogenomic reconstructions and integrative taxonomy have significantly improved the understanding of global Temnothorax diversity, but much taxonomic work is still needed in the Mediterranean region. Here, we present the integrative description of a new species of the genus, discovered in the central Mediterranean island of Sicily: Temnothorax siculus sp. n. is defined and compared to congeneric species integrating morphometrics and phylogenomics. It is a ground-nesting, lowland species, of which workers were regularly observed foraging on bushes and small trees. In the global phylogeny, covering all the main lineages of the region, it belongs to the Palearctic clade and is related to the tuberum and unifasciatus complexes. Morphological separation from other Sicilian Temnothorax species can generally be achieved on qualitative characters, but we also provide morphometric discriminant functions to separate it from T. apenninicus and especially T. unifasciatus . Temnothorax siculus has been rarely collected but appears to be widespread in Sicily, and may occur in neighboring regions.