Fakultät Agrarwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/9
Die Fakultät entwickelt in Lehre und Forschung nachhaltige Produktionstechniken der Agrar- und Ernährungswirtschaft. Sie erarbeitet Beiträge für den ländlichen Raum und zum Verbraucher-, Tier- und Umweltschutz.
Homepage: https://agrar.uni-hohenheim.de/
Browse
Browsing Fakultät Agrarwissenschaften by Sustainable Development Goals "15"
Now showing 1 - 20 of 23
- Results Per Page
- Sort Options
Publication The active core microbiota of two high-yielding laying hen breeds fed with different levels of calcium and phosphorus(2022) Roth, Christoph; Sims, Tanja; Rodehutscord, Markus; Seifert, Jana; Camarinha-Silva, AméliaThe nutrient availability and supplementation of dietary phosphorus (P) and calcium (Ca) in avian feed, especially in laying hens, plays a vital role in phytase degradation and mineral utilization during the laying phase. The required concentration of P and Ca peaks during the laying phase, and the direct interaction between Ca and P concentration shrinks the availability of both supplements in the feed. Our goal was to characterize the active microbiota of the entire gastrointestinal tract (GIT) (crop, gizzard, duodenum, ileum, caeca), including digesta- and mucosa-associated communities of two contrasting high-yielding breeds of laying hens (Lohmann Brown Classic, LB; Lohmann LSL-Classic, LSL) under different P and Ca supplementation levels. Statistical significances were observed for breed, GIT section, Ca, and the interaction of GIT section x breed, P x Ca, Ca x breed and P x Ca x breed (p < 0.05). A core microbiota of five species was detected in more than 97% of all samples. They were represented by an uncl. Lactobacillus (average relative abundance (av. abu.) 12.1%), Lactobacillus helveticus (av. abu. 10.8%), Megamonas funiformis (av. abu. 6.8%), Ligilactobacillus salivarius (av. abu. 4.5%), and an uncl. Fusicatenibacter (av. abu. 1.1%). Our findings indicated that Ca and P supplementation levels 20% below the recommendation have a minor effect on the microbiota compared to the strong impact of the bird’s genetic background. Moreover, a core active microbiota across the GIT of two high-yielding laying hen breeds was revealed for the first time.Publication Arbuscular mycorrhizal fungi-based bioremediation of mercury: insights from zinc and cadmium transporter studies(2023) Guo, Yaqin; Martin, Konrad; Hrynkiewicz, Katarzyna; Rasche, FrankPhytoremediation, a sustainable approach for rehabilitating mercury (Hg)-contaminated soils, can be enhanced by arbuscular mycorrhizal (AM) fungi, which promote plant growth and metal uptake, including Hg, in contaminated soils. Hg, despite lacking a biological function in plants, can be absorbed and translocated using Zn and/or Cd transporters, as these elements belong to the same group in the periodic table (12/2B). In fact, the specific transporters of Hg in plant roots remain unknown. This study is therefore to provide fundamental insights into the prospect to remediate Hg-contaminated soils, with a focus on the role of AM fungi. The hypothesis posits that Hg uptake in plants may be facilitated by transporters responsible for Zn/Cd, affected by AM fungi. The Scopus database was used to collect studies between 2000 and 2022 with a focus on the ecological role of AM fungi in environments contaminated with Zn and Cd. Particular emphasis was laid on the molecular mechanisms involved in metal uptake and partitioning. The study revealed that AM fungi indeed regulated Zn and/or Cd transporters, influencing Zn and/or Cd uptake in plants. However, these effects vary significantly based on environmental factors, such as plant and AM fungi species and soil conditions (e.g., pH, phosphorus levels). Given the limited understanding of Hg remediation, insights gained from Zn and Cd transporter systems can guide future Hg research. In conclusion, this study underscores the importance of considering environmental factors and provides fundamental insights into the potential of Hg phytoremediation with the assistance of AM fungi.Publication Automatic classification of submerged macrophytes at Lake Constance using laser bathymetry point clouds(2024) Wagner, Nike; Franke, Gunnar; Schmieder, Klaus; Mandlburger, Gottfried; Stateczny, AndrzejSubmerged aquatic vegetation, also referred to as submerged macrophytes, provides important habitats and serves as a significant ecological indicator for assessing the condition of water bodies and for gaining insights into the impacts of climate change. In this study, we introduce a novel approach for the classification of submerged vegetation captured with bathymetric LiDAR (Light Detection And Ranging) as a basis for monitoring their state and change, and we validated the results against established monitoring techniques. Employing full-waveform airborne laser scanning, which is routinely used for topographic mapping and forestry applications on dry land, we extended its application to the detection of underwater vegetation in Lake Constance. The primary focus of this research lies in the automatic classification of bathymetric 3D LiDAR point clouds using a decision-based approach, distinguishing the three vegetation classes, (i) Low Vegetation, (ii) High Vegetation, and (iii) Vegetation Canopy, based on their height and other properties like local point density. The results reveal detailed 3D representations of submerged vegetation, enabling the identification of vegetation structures and the inference of vegetation types with reference to pre-existing knowledge. While the results within the training areas demonstrate high precision and alignment with the comparison data, the findings in independent test areas exhibit certain deficiencies that are likely addressable through corrective measures in the future.Publication Biomonitoring via DNA metabarcoding and light microscopy of bee pollen in rainforest transformation landscapes of Sumatra(2022) Carneiro de Melo Moura, Carina; Setyaningsih, Christina A.; Li, Kevin; Merk, Miryam Sarah; Schulze, Sonja; Raffiudin, Rika; Grass, Ingo; Behling, Hermann; Tscharntke, Teja; Westphal, Catrin; Gailing, OliverBackground: Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps , via dual-locus DNA metabarcoding (ITS2 and rbcL ) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. Results: Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. Conclusions: Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.Publication Connecting resonance theory with social-ecological thinking: Conceptualizing self-world relationships in the context of sustainability transformations(2025) Brossette, Florian; Bieling, ClaudiaRelationships and interactions between humans and their environment play an important role in sustainability transformations. However, their conceptualization remains a big challenge in current social-ecological research. We propose resonance theory by the German sociologist Hartmut Rosa as a fruitful framework to advance social-ecological thinking. Resonance theory investigates the quality of the relationships between self and world and scrutinizes their relevance for transformations. To illustrate the potentials of resonance theory, we use a vignette approach to cases of landscape stewardship initiatives in the Black Forest Biosphere Reserve in Germany. In distinguishing between self and world and highlighting the role of relationships, resonance theory brings ontological and epistemological clarity, while overcoming a strict dichotomy between social and ecological. We find that resonance theory provides a much needed framework to describe how system-wide transformations emerge from interactions and out of relationships at the individual level. We argue that resonance theory contributes to social-ecological systems thinking by adding the notion of uncontrollability in transformations and shifting the debate on agency towards relationships. Synthesis and applications: This paper demonstrates the meaningfulness of relational paradigms for real-world transformations in theory and practice.Publication DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics(2021) Kienbaum, Lydia; Correa Abondano, Miguel; Blas, Raul; Schmid, KarlBackground: Maize cobs are an important component of crop yield that exhibit a high diversity in size, shape and color in native landraces and modern varieties. Various phenotyping approaches were developed to measure maize cob parameters in a high throughput fashion. More recently, deep learning methods like convolutional neural networks (CNNs) became available and were shown to be highly useful for high-throughput plant phenotyping. We aimed at comparing classical image segmentation with deep learning methods for maize cob image segmentation and phenotyping using a large image dataset of native maize landrace diversity from Peru. Results: Comparison of three image analysis methods showed that a Mask R-CNN trained on a diverse set of maize cob images was highly superior to classical image analysis using the Felzenszwalb-Huttenlocher algorithm and a Window-based CNN due to its robustness to image quality and object segmentation accuracy (r = 0.99). We integrated Mask R-CNN into a high-throughput pipeline to segment both maize cobs and rulers in images and perform an automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity, asymmetry, aspect ratio and average values of red, green and blue color channels for cob color. Statistical analysis identified key training parameters for efficient iterative model updating. We also show that a small number of 10–20 images is sufficient to update the initial Mask R-CNN model to process new types of cob images. To demonstrate an application of the pipeline we analyzed phenotypic variation in 19,867 maize cobs extracted from 3449 images of 2484 accessions from the maize genebank of Peru to identify phenotypically homogeneous and heterogeneous genebank accessions using multivariate clustering. Conclusions: Single Mask R-CNN model and associated analysis pipeline are widely applicable tools for maize cob phenotyping in contexts like genebank phenomics or plant breeding.Publication Diacetoxyscirpenol, a Fusarium exometabolite, prevents efficiently the incidence of the parasitic weed Striga hermonthica(2022) Anteyi, Williams Oyifioda; Klaiber, Iris; Rasche, FrankBackground: Certain Fusarium exometabolites have been reported to inhibit seed germination of the cereal-parasitizing witchweed, Striga hermonthica , in vitro . However, it is unknown if these exometabolites will consistently prevent S. hermonthica incidence in planta . The study screened a selection of known, highly phytotoxic Fusarium exometabolites, in identifying the most potent/efficient candidate (i.e., having the greatest effect at minimal concentration) to completely hinder S. hermonthica seed germination in vitro and incidence in planta , without affecting the host crop development and yield. Results: In vitro germination assays of the tested Fusarium exometabolites (i.e., 1,4-naphthoquinone, equisetin, fusaric acid, hymeglusin, neosolaniol (Neo), T-2 toxin (T-2) and diacetoxyscirpenol (DAS)) as pre- Striga seed conditioning treatments at 1, 5, 10, 20, 50 and 100 µM, revealed that only DAS, out of all tested exometabolites, completely inhibited S. hermonthica seed germination at each concentration. It was followed by T-2 and Neo, as from 10 to 20 µM respectively. The remaining exometabolites reduced S. hermonthica seed germination as from 20 µM ( P < 0. 0001). In planta assessment (in a S. hermonthica -sorghum parasitic system) of the exometabolites at 20 µM showed that, although, none of the tested exometabolites affected sorghum aboveground dry biomass ( P > 0.05), only DAS completely prevented S. hermonthica incidence. Following a 14-d incubation of DAS in the planting soil substrate, bacterial 16S ribosomal RNA (rRNA) and fungal 18S rRNA gene copy numbers of the soil microbial community were enhanced; which coincided with complete degradation of DAS in the substrate. Metabolic footprinting revealed that the S. hermonthica mycoherbicidal agent, Fusarium oxysporum f. sp. strigae (isolates Foxy-2, FK3), did not produce DAS; a discovery that corresponded with underexpression of key genes (Tri5, Tri4) necessary for Fusarium trichothecene biosynthesis ( P < 0.0001). Conclusions: Among the tested Fusarium exometabolites, DAS exhibited the most promising herbicidal potential against S. hermonthica . Thus, it could serve as a new biocontrol agent for efficient S. hermonthica management. Further examination of DAS specific mode of action against the target weed S. hermonthica at low concentrations (≤ 20 µM), as opposed to non-target soil organisms, is required.Publication Disc mower versus bar mower: Evaluation of the direct effects of two common mowing techniques on the grassland arthropod fauna(2025) von Berg, Lea; Frank, Jonas; Betz, Oliver; Steidle, Johannes L. M.; Böttinger, Stefan; Sann, Manuela1. In Central Europe, species‐rich grasslands are threatened by intensive agriculture with frequent mowing, contributing to the reduction of arthropods such as insects and spiders. However, comprehensive and standardised studies on the direct effects of the two most agriculturally relevant mowing techniques, e.g., double‐blade bar mower versus disc mower, are lacking. 2. In a 2‐year experiment, we have investigated the direct effect of mowing on eight abundant arthropod groups in grassland, covering two seasonal mowing events in both years, using a randomised block design. We compared (a) an unmown control, (b) a double‐blade bar mower and (c) a disc mower. 3. For most of the taxonomic groups studied, a significantly lower number of individuals was found in the experimental plots immediately after mowing, regardless of the mowing technique, compared to an unmown control. This was not the case for Orthoptera and Coleoptera, which did not show a significant reduction in the number of individuals for both mowing techniques (Orthoptera) or only for the double‐blade bar mower (Coleoptera). 4. Between both mowing techniques, no significant differences were found for all taxonomic groups investigated. 5. Synthesis and applications: Our findings suggest that mowing in general has a negative impact on abundant arthropod groups in grassland, regardless of the method used. Tractor‐driven double‐blade bar mowers do not seem to be a truly insect‐friendly alternative to a conventional disc mower. Other factors such as cutting height and mowing regimes should be seriously considered to protect spiders and insects from the negative effects of mowing. In addition, we strongly recommend the maintenance of unmown refugia. Insects and spiders that are spared by mowing can take refuge in these unmown areas to avoid subsequent harvesting and thermally unfavourable conditions that arise on mown areas. Further, unmown refugia are basic habitat structures for a subsequent recolonisation of mown areas once the flora has recovered.Publication Distribution of Al, Fe, Si, and DOC between size fractions mobilised from topsoil horizons with progressing degree of podzolisation(2022) Krettek, Agnes; Stein, Mathias; Rennert, ThiloAluminium, Fe, Si, and dissolved organic C (DOC) accumulate in the subsoil of Podzols after mobilisation in the topsoil. We conducted laboratory experiments with topsoil horizons with progressing degree of podzolisation by irrigation with artificial rainwater at varying intensity and permanence. We monitored the concentrations and distribution of mobilised Al, Fe, Si, and DOC between size fractions (< 1000 Dalton, 1 kDa– < 0.45 µm, and > 0.45 µm). Total eluate concentrations were increased at the onset of the experiments and after the first irrigation interruption, indicating non-equilibrium release. There was no statistical effect of the degree of podzolisation on element concentrations. Release of Al, Fe, and DOC was mostly dominant in the fraction 1 kDa– < 0.45 µm, indicating metals complexed by larger organic molecules and colloids. Silicon released was dominantly monomeric silicic acid < 1 kDa. Particularly with the least podzolised soils, Al and Si concentrations < 1 kDa might have been controlled by short-range ordered aluminosilicates, while their transport in colloidal form was unlikely. Our study pointed to both quantitative and qualitative seasonality of element release during podzolisation, to decoupling of Al and Si release regarding size, and to different minerals that control element release as a function of the degree of podzolisation.Publication Do we need post-tree thinning management? Prescribed fire and goat browsing to control woody encroacher species in an Ethiopian savanna(2024) Abate, Teshome; Abebe, Tesfaye; Treydte, AnnaWorldwide, bush encroachment threatens rangeland ecosystem services, including plant biodiversity and forage for livestock. Various control methods for encroaching woody species and restoring herbaceous vegetation exist but have rarely been explored experimentally. We assessed the impact of post-tree thinning management on tree mortality, the herbaceous community, and overall rangeland condition in Borana, an Ethiopian savanna ecosystem. At two 1.4 ha areas of encroached mono-specific Vachellia drepanolobium (whistling thorn) stands, we set up twenty-four 20 × 10 m experimental plots with four post-tree-thinning treatments (goat browsing only (1), prescribed fire (2), fire and goat browsing (3), and control (4) (i.e., no management after tree cutting), with three replications in a complete block design. Over two growing periods, we monitored resulting tree mortality, coppicing, seedling mortality and recruitment, as well as herbaceous layer attributes (diversity, biomass) and overall rangeland condition. All three post-tree thinning management scenarios significantly enhanced tree mortalities, reduced seedling recruitment and increased the abundance of the dominant desirable grass species. Prescribed fire and fire and goat-browsing treatments resulted in significantly greater grass and forb species richness, forb diversity, and biomass, as well as the overall rangeland condition compared to goat browsing only and the control treatment. However, grass species diversity did not respond to treatments. Post-tree management significantly increased tree mortality, reduced seedling recruitment, and increased the abundance of desirable grass species. Our findings strongly suggest that post-thinning management, particularly prescribed fire or a combination of fire and browsing, is highly effective in suppressing woody encroachment and improving biomass and overall rangeland condition.Publication Efficacy of various mechanical weeding methods - single and in combination - in terms of different field conditions and weed densities(2021) Naruhn, Georg-Peter; Peteinatos, Gerassimos G.; Butz, Andreas F.; Möller, Kurt; Gerhards, RolandPublic awareness and environmental policies have increased interest in applying non-herbicide weed control methods in conventional farming systems. Even though mechanical weed control has been used for centuries in agricultural practice, continuous developments—both in terms of implements and automation technologies—are continuously improving the potential outcomes. Current mechanical weed control methods were evaluated for their weed control efficacy and effects on yield potential against their equivalent herbicide methods. Furthermore, not much is known about the correlation between weed control efficacy (WCE) of different mechanical methods at varying weed density levels. A total of six experiments in winter wheat (2), peas (2), and soybean (2) were carried out in the years 2018, 2019, and 2020 in southwestern Germany. Harrowing and hoeing treatments at different speeds were carried out and compared to the herbicide treatments and untreated control plots. Regarding the average WCE, the combination of harrowing and hoeing was both the strongest (82%) and the most stable (74–100%) mechanical treatment in the different weed density levels. Whereas, in average, hoeing (72%) and harrowing (71%) were on the same WCE level, but harrowing (49–82%) was more stable than hoeing (40–99%). The grain yields in winter wheat varied between 4.1 Mg∙ha−1 (control) and 6.3 Mg∙ha−1 (harrow), in pea between 2.8 Mg∙ha−1 (hoe slow) and 5.7 Mg∙ha−1 (hoe fast) and in soybean between 1.7 Mg∙ha−1 (control) and 4 Mg∙ha−1 (herbicide). However, there were no significant differences in most cases. The results have shown that it is not possible to pinpoint a specific type of treatment as the most appropriate method for this cultivation, across all of the different circumstances. Different field and weather conditions can heavily affect and impact the expected outcome, giving, each time, an advantage for a specific type of treatment.Publication Fecal cortisol metabolites indicate increased stress levels in horses during breaking-in: a pilot study(2025) Krieber, Julia; Nowak, Aurelia C.; Geissberger, Jakob; Illichmann, Oliver; Macho-Maschler, Sabine; Palme, Rupert; Dengler, Franziska; Madigan, JohnSport horses are frequently exposed to situations that were identified as stressors, indicated by an increased cortisol release, which might impair animal welfare. However, while many studies deal with the impact of exercise, transport, and competition on stress in horses, little is known about the early phase of a horse’s sports career and studies investigating the stress level of young horses during breaking-in are limited. To compare stress levels in unridden horses, horses during breaking-in, and horses in training we collected fecal samples of young, unridden horses ( n = 28) and of horses in different training stages ( n = 13) and measured fecal cortisol metabolite (FCM) concentrations. Our preliminary results showed that FCM concentrations of unridden horses were significantly lower than those of horses in training (Mann–Whitney rank sum test, p < 0.001). Particularly in the first year under the saddle FCMs were significantly higher than in unridden horses (one way ANOVA + post hoc Holm–Sidak test, p < 0.05), with a tendency for FCM levels to decrease with time in training. Furthermore, we observed that within the group of ridden horses there was a larger range of variability in FCM levels, suggesting individual variations regarding their ability to deal with (training-induced) stress. These results indicate that breaking-in is a stressful time for young horses, underlining the importance of carrying out the initial training as carefully as possible.Publication Genetic dissection of drought tolerance in maize through GWAS of agronomic traits, stress tolerance indices, and phenotypic plasticity(2025) Li, Ronglan; Li, Dongdong; Guo, Yuhang; Wang, Yueli; Zhang, Yufeng; Li, Le; Yang, Xiaosong; Chen, Shaojiang; Würschum, Tobias; Liu, Wenxin; Han, De-GuoDrought severely limits crop yield every year, making it critical to clarify the genetic basis of drought tolerance for breeding of improved varieties. As drought tolerance is a complex quantitative trait, we analyzed three phenotypic groups: (1) agronomic traits under well-watered (WW) and water-deficit (WD) conditions, (2) stress tolerance indices of these traits, and (3) phenotypic plasticity, using a multi-parent doubled haploid (DH) population assessed in multi-environment trials. Genome-wide association studies (GWAS) identified 130, 171, and 71 quantitative trait loci (QTL) for the three groups of phenotypes, respectively. Only one QTL was shared among all trait groups, 25 between stress indices and agronomic traits, while the majority of QTL were specific to their group. Functional annotation of candidate genes revealed distinct pathways of the three phenotypic groups. Candidate genes under WD conditions were enriched for stress response and epigenetic regulation, while under WW conditions for protein synthesis and transport, RNA metabolism, and developmental regulation. Stress tolerance indices were enriched for transport of amino/organic acids, epigenetic regulation, and stress response, whereas plasticity showed enrichment for environmental adaptability. Transcriptome analysis of 26 potential candidate genes showed tissue-specific drought responses in leaves, ears, and tassels. Collectively, these results indicated both shared and independent genetic mechanisms underlying drought tolerance, providing novel insights into the complex phenotypes related to drought tolerance and guiding further strategies for molecular breeding in maize.Publication The importance of individual movement and feeding behaviour for long-distance seed dispersal by red deer: a data-driven model(2020) Wright, Stephen J.; Heurich, Marco; Buchmann, Carsten M.; Böcker, Reinhard; Schurr, Frank M.Background: Long-distance seed dispersal (LDD) has strong impacts on the spatiotemporal dynamics of plants. Large animals are important LDD vectors because they regularly transport seeds of many plant species over long distances. While there is now ample evidence that behaviour varies considerably between individual animals, it is not clear to what extent inter-individual variation in behaviour alters seed dispersal by animals. Methods: We study how inter-individual variation in the movement and feeding behaviour of one of Europe’s largest herbivores (the red deer, Cervus elaphus) affects internal seed dispersal (endozoochory) of multiple plant species. We combine movement data of 21 individual deer with measurements of seed loads in the dung of the same individuals and with data on gut passage time. These data serve to parameterize a model of passive dispersal that predicts LDD in three orientations (horizontal as well as upward and downward in elevation). With this model we investigate to what extent per-seed probabilities of LDD and seed load vary between individuals and throughout the vegetation period (May–December). Subsequently, we test whether per-seed LDD probability and seed load are positively (or negatively) correlated so that more mobile animals disperse more (or less) seeds. Finally, we examine whether non-random associations between per-seed LDD probability and seed load affect the LDD of individual plant species. Results: The studied deer dispersed viable seeds of at least 62 plant species. Deer individuals varied significantly in per-seed LDD probability and seed loads. However, more mobile animals did not disperse more or less seeds than less mobile ones. Plant species also did not differ significantly in the relationship between per-seed LDD probability and seed load. Yet plant species differed in how their seed load was distributed across deer individuals and in time, and this caused their LDD potential to differ more than twofold. For several plant species, we detected non-random associations between per-seed LDD probability and seed load that generally increased LDD potential. Conclusions: Inter-individual variation in movement and feeding behaviour means that certain deer are substantially more effective LDD vectors than others. This inter-individual variation reduces the reliability of LDD and increases the sensitivity of LDD to the decline of deer populations. Variation in the dispersal services of individual animals should thus be taken into account in models in order to improve LDD projections.Publication Improving cover crop mixtures to increase soil carbon inputs and weed suppression as a tool to promote yield potential(2024) Groß, Jonas; Müller, TorstenArable cropping systems are facing challenges imposed by climate change and are, at the same time, a tool to mitigate climate change. Soils are essential in securing yield potential and acting as a carbon sink. Recognizing small-scale site-specific differences in crop management and integrating cover crops, which provide ecosystem services such as carbon sequestration and weed suppression, are two approaches to climate-smart agriculture. To investigate site-specific soil heterogeneity, soil properties were analyzed in a field trial, measuring at three soil depths in 42 plots to determine their influence on yield measures. Soil organic carbon, silt, and clay contents in both topsoil and subsoil explained 45-46% of the variability in grain yield. Additionally, a positive correlation was found between increasing clay content in the topsoil and grain yield and tiller density. A higher clay content in the subsoil resulted in a decrease in grain yield. Soil organic carbon was identified as a soil property that positively influences yield and yield formation at any soil depth through multiple regressions and cluster analysis. Soil organic carbon is a critical soil measure that can significantly improve yield potential and can be manipulated by crop management practices like cover cropping. In a second field experiment, the impacts of increasing plant diversity of cover crop mixtures on rhizosphere carbon input and microbial utilization were investigated. A comparison was made between Mustard (Sinapis alba L.) planted as a sole crop and diversified cover crop mixtures of four (Mix4) or twelve (Mix12) species. A 13C-pulse labeling field experiment traced C transfer from shoots to roots to the soil microbial community. Mix 4 doubled the net CO2-C removal from the atmosphere, while Mix 12 more than tripled it, indicating that plant diversity positively impacts carbon cycling. This is reflected in higher atmospheric C uptake, higher transport rates to the rhizosphere, higher microbial incorporation, and longer residence time in the soil environment, improving the efficiency of C cycling in cropping systems. Root C-transfer could be identified as a fast pathway for C to reach soil C-compartments, but a substantial share of atmospheric C-catch comes from shoot biomass. In a third field experiment, the influence of species combination on shoot biomass formation was systematically assessed by investigating species interactions in dual cover crop mixtures and their competitiveness to suppress weeds before winter under different growing conditions. The shoot biomass share of a cover crop species in a dual-species mixture was found to be directly linked to its shoot biomass in a pure stand. Mustard and phacelia had similar effects on the shoot biomass production of the second species added to the mixture. Cruciferous species were more competitive against weeds than other cover crop species and could suppress weeds even when mixed with a less competitive partner. Weed suppression in mixtures with phacelia depended on the second component. Our results indicate that dual mixtures containing one competitive species reduce weed shoot biomass before winter, comparable to competitive pure stands. The research in this thesis shows that C content in the soil plays a crucial role in yield formation in arable cropping systems in Germany. Finally, the study has demonstrated that implementing cover crop mixtures can enhance soil C input and represent a valuable method for preserving yield potential. It was also shown that an intelligent combination of cover crop species can determine successful development and weed suppression.Publication Market-based instruments for biodiversity in agricultural landscapes: An evaluation of quality criteria in a German case study(2025) Streit, Lea; Feuerbacher, Arndt; Röhl, MarkusMarket-based instruments (MBIs) for the protection and promotion of biodiversity have gained significant importance in recent years. The success of MBIs depends largely on the transparent presentation of their actual effects, which rely on the quality of implementation. Quality criteria can be used to evaluate this. To date, few studies have examined whether and how these criteria are applied. This study seeks to address this gap, by using MBIs in the German agricultural landscape as a case study. Quality criteria were defined on the basis of a literature review; then applied to MBIs identified through an internet search and finally analyzed. Quality criteria related to methodological approaches (implementation, maintenance, used seed mixtures) and quality control (monitoring, localization) are presented less frequently than information on rights and obligations or the use of financial funds. Among the 151 MBIs analyzed, 70% lack control mechanisms and monitoring systems, indicating unverified effectiveness. Additionally, MBIs financed through program approaches are more likely to have control mechanisms and include perennial measures than MBIs funded by direct payments of sponsors or consumers purchasing a product. The development of MBI offerings suggests that there is persistent and growing demand, as some programs have been running for several decades. However, without ecological monitoring, it is not possible to ascertain whether these measures benefit biodiversity. To establish standardized methods for comparing MBIs for biodiversity, policymakers must consider official guidelines and, where appropriate, implement regulatory frameworks.Publication Quantifying patch‐specific seed dispersal and local population dynamics to estimate population spread of an endangered plant species(2021) Zhu, Jinlei; Hrušková, Karolína; Pánková, Hana; Münzbergová, ZuzanaAim: Habitat loss and fragmentation impose high extinction risk upon endangered plant species globally. For many endangered plant species, as the remnant habitats become smaller and more fragmented, it is vital to estimate the population spread rate of small patches in order to effectively manage and preserve them for potential future range expansion. However, population spread rate has rarely been quantified at the patch level to inform conservation strategies and management decisions. To close this gap, we quantify the patch-specific seed dispersal and local population dynamics of Minuartia smejkalii, which is a critically endangered plant species endemic in the Czech Republic and is of urgent conservation concern. Location: Želivka and Hrnčíře, Czechia. Methods: We conducted demographic analyses using population projection matrices with long-term demographic data and used an analytic mechanistic dispersal model to simulate seed dispersal. We then used information on local population dynamics and seed dispersal to estimate the population spread rate and compared the relative contributions of seed dispersal and population growth rate to the population spread rate. Results: We found that although both seed dispersal and population growth rate in M. smejkalii were critically limited, the population spread rate depended more strongly on the maximal dispersal distance than on the population growth rate. Main conclusions: We recommend conservationists to largely increase the dispersal distance of M. smejkalii. Generally, efforts made to increase seed dispersal ability could largely raise efficiency and effectiveness of conservation actions for critically endangered plant species.Publication Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology(2025) Gould, Elliot; Berauer, Bernd J.; Ernst, Ulrich Rainer; Zitomer, Rachel A.Although variation in effect sizes and predicted values among studies of similar phenomena is inevitable, such variation far exceeds what might be produced by sampling error alone. One possible explanation for variation among results is differences among researchers in the decisions they make regarding statistical analyses. A growing array of studies has explored this analytical variability in different fields and has found substantial variability among results despite analysts having the same data and research question. Many of these studies have been in the social sciences, but one small “many analyst” study found similar variability in ecology. We expanded the scope of this prior work by implementing a large-scale empirical exploration of the variation in effect sizes and model predictions generated by the analytical decisions of different researchers in ecology and evolutionary biology. We used two unpublished datasets, one from evolutionary ecology (blue tit, Cyanistes caeruleus , to compare sibling number and nestling growth) and one from conservation ecology ( Eucalyptus , to compare grass cover and tree seedling recruitment). The project leaders recruited 174 analyst teams, comprising 246 analysts, to investigate the answers to prespecified research questions. Analyses conducted by these teams yielded 141 usable effects (compatible with our meta-analyses and with all necessary information provided) for the blue tit dataset, and 85 usable effects for the Eucalyptus dataset. We found substantial heterogeneity among results for both datasets, although the patterns of variation differed between them. For the blue tit analyses, the average effect was convincingly negative, with less growth for nestlings living with more siblings, but there was near continuous variation in effect size from large negative effects to effects near zero, and even effects crossing the traditional threshold of statistical significance in the opposite direction. In contrast, the average relationship between grass cover and Eucalyptus seedling number was only slightly negative and not convincingly different from zero, and most effects ranged from weakly negative to weakly positive, with about a third of effects crossing the traditional threshold of significance in one direction or the other. However, there were also several striking outliers in the Eucalyptus dataset, with effects far from zero. For both datasets, we found substantial variation in the variable selection and random effects structures among analyses, as well as in the ratings of the analytical methods by peer reviewers, but we found no strong relationship between any of these and deviation from the meta-analytic mean. In other words, analyses with results that were far from the mean were no more or less likely to have dissimilar variable sets, use random effects in their models, or receive poor peer reviews than those analyses that found results that were close to the mean. The existence of substantial variability among analysis outcomes raises important questions about how ecologists and evolutionary biologists should interpret published results, and how they should conduct analyses in the future.Publication Spatio-temporal water quality determines algal bloom occurrence and possibly lesser flamingo (Phoeniconaias minor) presence in Momella lakes, Tanzania(2022) Lihepanyama, Deogratias Ladislaus; Ndakidemi, Patrick Alois; Treydte, Anna ChristinaEutrophication and algal blooms have sparked worldwide concern because of their widespread effects on water-dependent species. Harmful algal blooms can cause fatal effects to lesser flamingos (Phoeniconaias minor), obligatory filter feeders and vital bio-indicators in soda lakes. Thus, early detection of algal blooms and potential indicators in water quality is critical, but general tools are lacking in eastern African soda lakes. We monitored algal biomass changes and related water physico–chemical variables for 12 consecutive months in the lakes Big Momella and Rishateni in northern Tanzania. We used chlorophyll-a to measure algal biomass and quantified water physico–chemical variables that might influence algae growth. We also monitored lesser flamingo numbers to understand trends across the year and according to algal bloom occurrence. Algal biomass was strongly related to water nitrogen (r = 0.867; p < 0.001) and phosphorus (r = 0.832; p < 0.001). Monthly patterns showed significant differences in water quality and algal biomass (F = 277, p < 0.001) but not across sampling sites (F = 0.029, p = 0.971). Lesser flamingo numbers seemed to be related to algal biomass at Lake Big Momella (r = 0.828; p < 0.001) and shortly after algal biomass peaked high (i.e., March and April 2021), flamingo numbers declined. Lake Rishateni showed similar patterns. Our findings can provide a basis towards understanding the factors contributing to temporal changes in lesser flamingo abundance due to spatio–temporal water quality variations, which is important for optimising conservation efforts for the species in these unique Momella lakes.Publication Testing agronomic treatments to improve the establishment of novel miscanthus hybrids on marginal land(2025) Lewin, Eva; Clifton-Brown, John; Jensen, Elaine; Lewandowski, Iris; Krzyżak, Jacek; Pogrzeba, Marta; Hartung, Jens; Wolfmüller, Cedric; Kiesel, Andreas; Fujii, YoshiharuMiscanthus is considered a promising candidate for the cultivation of marginal land. This land poses unique challenges, and experiments have shown that the “establishment phase” is of paramount importance to the long-term yield performance of miscanthus. This experiment analyzes novel miscanthus hybrids and how their establishment on marginal land can be improved through agronomic interventions. Experiments took place at two sites in Germany: at Ihinger Hof, with a very shallow soil profile and high stone content, and at Reichwalde, where the soil was repurposed river sediment with low organic matter, high stone content, and a compacted lower horizon. These marginal conditions functioned as test cases for the improvement of miscanthus establishment agronomy. Four hybrids ( Miscanthus x giganteus , Gnt10, Gnt43, and Syn55) and agronomic treatments such as plastic mulch film, miscanthus mulch, inoculation with mycorrhizal fungi, and fertilization were tested in two years at both sites in 2021 and 2022. Specific weather conditions and the timing of planting were strong determinants of establishment success and no single treatment combination was found that consistently increased the establishment success. Plastic mulch films were found to hinder rather than help establishment in both these locations. Chipped miscanthus mulch caused nitrogen immobilization and stunted plant growth. At Ihinger Hof the novel seed-based miscanthus hybrid Gnt43 produced twice the biomass of other hybrids (7 t ha −1 ) in the first growing season. Gnt10 yielded well in 2021 and showed impressive tolerance to water stress in the summer of 2022. No treatment combination was found that consistently increased the establishment success of miscanthus hybrids across sites and years. Novel genotypes consistently outperformed the standard commercial miscanthus hybrid Miscanthus x giganteus . Gnt10 may be a promising candidate for the cultivation of water-stress-prone marginal lands, due to its isohydric behavior and high yield potential.