Landesanstalten
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/30
Browse
Browsing Landesanstalten by Sustainable Development Goals "12"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Publication Can we abandon phosphorus starter fertilizer in maize? Results from a diverse panel of elite and doubled haploid landrace lines of maize (Zea mays L.)(2022) Roller, Sandra; Weiß, Thea M.; Li, Dongdong; Liu, Wenxin; Schipprack, Wolfgang; Melchinger, Albrecht E.; Hahn, Volker; Leiser, Willmar L.; Würschum, TobiasThe importance of phosphorus (P) in agriculture contrasts with the negative environmental impact and the limited resources worldwide. Reducing P fertilizer application by utilizing more efficient genotypes is a promising way to address these issues. To approach this, a large panel of maize (Zea mays L.) comprising each 100 Flint and Dent elite lines and 199 doubled haploid lines from six landraces was assessed in multi-environment field trials with and without the application of P starter fertilizer. The treatment comparison showed that omitting the starter fertilizer can significantly affect traits in early plant development but had no effect on grain yield. Young maize plants provided with additional P showed an increased biomass, faster growth and superior vigor, which, however, was only the case under environmental conditions considered stressful for maize cultivation. Importantly, though the genotype-by-treatment interaction variance was comparably small, there is genotypic variation for this response that can be utilized in breeding. The comparison of elite and doubled haploid landrace lines revealed a superior agronomic performance of elite material but also potentially valuable variation for early traits in the landrace doubled haploid lines. In conclusion, our results illustrate that breeding for P efficient maize cultivars is possible towards a reduction of P fertilizer in a more sustainable agriculture.Publication Diacetoxyscirpenol, a Fusarium exometabolite, prevents efficiently the incidence of the parasitic weed Striga hermonthica(2022) Anteyi, Williams Oyifioda; Klaiber, Iris; Rasche, Frank; Anteyi, Williams Oyifioda; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany; Klaiber, Iris; Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany; Rasche, Frank; Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, GermanyBackground: Certain Fusarium exometabolites have been reported to inhibit seed germination of the cereal-parasitizing witchweed, Striga hermonthica , in vitro . However, it is unknown if these exometabolites will consistently prevent S. hermonthica incidence in planta . The study screened a selection of known, highly phytotoxic Fusarium exometabolites, in identifying the most potent/efficient candidate (i.e., having the greatest effect at minimal concentration) to completely hinder S. hermonthica seed germination in vitro and incidence in planta , without affecting the host crop development and yield. Results: In vitro germination assays of the tested Fusarium exometabolites (i.e., 1,4-naphthoquinone, equisetin, fusaric acid, hymeglusin, neosolaniol (Neo), T-2 toxin (T-2) and diacetoxyscirpenol (DAS)) as pre- Striga seed conditioning treatments at 1, 5, 10, 20, 50 and 100 µM, revealed that only DAS, out of all tested exometabolites, completely inhibited S. hermonthica seed germination at each concentration. It was followed by T-2 and Neo, as from 10 to 20 µM respectively. The remaining exometabolites reduced S. hermonthica seed germination as from 20 µM ( P < 0. 0001). In planta assessment (in a S. hermonthica -sorghum parasitic system) of the exometabolites at 20 µM showed that, although, none of the tested exometabolites affected sorghum aboveground dry biomass ( P > 0.05), only DAS completely prevented S. hermonthica incidence. Following a 14-d incubation of DAS in the planting soil substrate, bacterial 16S ribosomal RNA (rRNA) and fungal 18S rRNA gene copy numbers of the soil microbial community were enhanced; which coincided with complete degradation of DAS in the substrate. Metabolic footprinting revealed that the S. hermonthica mycoherbicidal agent, Fusarium oxysporum f. sp. strigae (isolates Foxy-2, FK3), did not produce DAS; a discovery that corresponded with underexpression of key genes (Tri5, Tri4) necessary for Fusarium trichothecene biosynthesis ( P < 0.0001). Conclusions: Among the tested Fusarium exometabolites, DAS exhibited the most promising herbicidal potential against S. hermonthica . Thus, it could serve as a new biocontrol agent for efficient S. hermonthica management. Further examination of DAS specific mode of action against the target weed S. hermonthica at low concentrations (≤ 20 µM), as opposed to non-target soil organisms, is required.Publication Fed-batch bioreactor cultivation of Bacillus subtilis using vegetable juice as an alternative carbon source for lipopeptides production: a shift towards a circular bioeconomy(2024) Gugel, Irene; Vahidinasab, Maliheh; Benatto Perino, Elvio Henrique; Hiller, Eric; Marchetti, Filippo; Costa, Stefania; Pfannstiel, Jens; Konnerth, Philipp; Vertuani, Silvia; Manfredini, Stefano; Hausmann, Rudolf; Gugel, Irene; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Vahidinasab, Maliheh; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Benatto Perino, Elvio Henrique; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Hiller, Eric; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Marchetti, Filippo; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Costa, Stefania; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Pfannstiel, Jens; Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, Ottlie-Zeller-Weg 2, 70599 Stuttgart, Germany; Konnerth, Philipp; Department of Conversion Technology of Biobased Resources, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart, Germany;; Vertuani, Silvia; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Manfredini, Stefano; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy, (S.V.);; Hausmann, Rudolf; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (E.H.B.P.);; Gudiña, EduardoIn a scenario of increasing alarm about food waste due to rapid urbanization, population growth and lifestyle changes, this study aims to explore the valorization of waste from the retail sector as potential substrates for the biotechnological production of biosurfactants. With a perspective of increasingly contributing to the realization of the circular bioeconomy, a vegetable juice, derived from unsold fruits and vegetables, as a carbon source was used to produce lipopeptides such as surfactin and fengycin. The results from the shake flask cultivations revealed that different concentrations of vegetable juice could effectively serve as carbon sources and that the fed-batch bioreactor cultivation strategy allowed the yields of lipopeptides to be significantly increased. In particular, the product/substrate yield of 0.09 g/g for surfactin and 0.85 mg/g for fengycin was obtained with maximum concentrations of 2.77 g/L and 27.53 mg/L after 16 h, respectively. To conclude, this study provides the successful fed-batch cultivation of B. subtilis using waste product as the carbon source to produce secondary metabolites. Therefore, the consumption of agricultural product wastes might be a promising source for producing valuable metabolites which have promising application potential to be used in several fields of biological controls of fungal diseases.Publication Long-term breeding progress of yield, yield-related, and disease resistance traits in five cereal crops of German variety trials(2021) Laidig, Friedrich; Feike, T.; Klocke, B.; Macholdt, J.; Miedaner, Thomas; Rentel, D.; Piepho, Hans-PeterPlant breeding and improved crop management generated considerable progress in cereal performance over the last decades. Climate change, as well as the political and social demand for more environmentally friendly production, require ongoing breeding progress. This study quantified long-term trends for breeding progress and ageing effects of yield, yield-related traits, and disease resistance traits from German variety trials for five cereal crops with a broad spectrum of genotypes. The varieties were grown over a wide range of environmental conditions during 1988–2019 under two intensity levels, without (I1) and with (I2) fungicides and growth regulators. Breeding progress regarding yield increase was the highest in winter barley followed by winter rye hybrid and the lowest in winter rye population varieties. Yield gaps between I2 and I1 widened for barleys, while they shrank for the other crops. A notable decrease in stem stability became apparent in I1 in most crops, while for diseases generally a decrasing susceptibility was found, especially for mildew, brown rust, scald, and dwarf leaf rust. The reduction in disease susceptibility in I2 (treated) was considerably higher than in I1. Our results revealed that yield performance and disease resistance of varieties were subject to considerable ageing effects, reducing yield and increasing disease susceptibility. Nevertheless, we quantified notable achievements in breeding progress for most disease resistances. This study indicated an urgent and continues need for new improved varieties, not only to combat ageing effects and generate higher yield potential, but also to offset future reduction in plant protection intensity.Publication The need for consumer-focused household food waste reduction policies using dietary patterns and socioeconomic status as predictors: a study on wheat bread waste in Shiraz, Iran(2022) Ghaziani, Shahin; Ghodsi, Delaram; Schweikert, Karsten; Dehbozorgi, Gholamreza; Rasekhi, Hamid; Faghih, Shiva; Doluschitz, ReinerCurrent household food waste (HFW) reduction plans usually focus on raising consumer awareness, which is essential but insufficient because HFW is predominantly attributed to unconscious behavioral factors that vary across consumer groups. Therefore, identifying such factors is crucial for predicting HFW levels and establishing effective plans. This study explored the role of dietary patterns (DP) and socioeconomic status (SES) as predictors of HBW using linear and non-linear regression models. Questionnaire interviews were performed in 419 households in Shiraz during 2019. A multilayer sampling procedure including stratification, clustering, and systematic sampling was used. Three main DPs, i.e., unhealthy, Mediterranean, and traditional, were identified using a food frequency questionnaire. Results indicated that a one-unit rise in the household’s unhealthy DP score was associated with an average increase in HBW of 0.40%. Similarly, a one-unit increase in the unhealthy DP score and the SES score increased the relative likelihood of bread waste occurrence by 25.6% and 14.5%, respectively. The comparison of findings revealed inconsistencies in HFW data, and therefore the necessity of studying HFW links to factors such as diet and SES. Further investigations that explore HFW associations with household characteristics and behavioral factors will help establish contextual and effective consumer-focused plans.Publication Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits(2021) Marulanda, Jose J.; Mi, Xuefei; Utz, H. Friedrich; Melchinger, Albrecht E.; Würschum, Tobias; Longin, C. Friedrich H.Selection indices using genomic information have been proposed in crop-specific scenarios. Routine use of genomic selection (GS) for simultaneous improvement of multiple traits requires information about the impact of the available economic and logistic resources and genetic properties (variances, trait correlations, and prediction accuracies) of the breeding population on the expected selection gain. We extended the R package “selectiongain” from single trait to index selection to optimize and compare breeding strategies for simultaneous improvement of two traits. We focused on the expected annual selection gain (ΔGa) for traits differing in their genetic correlation, economic weights, variance components, and prediction accuracies of GS. For all scenarios considered, breeding strategy GSrapid (one-stage GS followed by one-stage phenotypic selection) achieved higher ΔGa than classical two-stage phenotypic selection, regardless of the index chosen to combine the two traits and the prediction accuracy of GS. The Smith–Hazel or base index delivered higher ΔGa for net merit and individual traits compared to selection by independent culling levels, whereas the restricted index led to lower ΔGa in net merit and divergent results for selection gain of individual traits. The differences among the indices depended strongly on the correlation of traits, their variance components, and economic weights, underpinning the importance of choosing the selection indices according to the goal of the breeding program. We demonstrate our theoretical derivations and extensions of the R package “selectiongain” with an example from hybrid wheat by designing indices to simultaneously improve grain yield and grain protein content or sedimentation volume.Publication Structure elucidation and characterization of novel glycolipid biosurfactant produced by Rouxiella badensis DSM 100043T(2025) Harahap, Andre Fahriz Perdana; Conrad, Jürgen; Wolf, Mario; Pfannstiel, Jens; Klaiber, Iris; Grether, Jakob; Hiller, Eric; Vahidinasab, Maliheh; Salminen, Hanna; Treinen, Chantal; Perino, Elvio Henrique Benatto; Hausmann, Rudolf; Harahap, Andre Fahriz Perdana; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Conrad, Jürgen; Department of Organic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (J.C.); (M.W.); Wolf, Mario; Department of Organic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (J.C.); (M.W.); Pfannstiel, Jens; Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (J.P.); (I.K.); Klaiber, Iris; Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Ottilie-Zeller-Weg 2, 70599 Stuttgart, Germany; (J.P.); (I.K.); Grether, Jakob; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Hiller, Eric; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Vahidinasab, Maliheh; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Salminen, Hanna; Department of Food Material Science (150g), Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 21/25, 70599 Stuttgart, Germany;; Treinen, Chantal; Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;; Perino, Elvio Henrique Benatto; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Hausmann, Rudolf; Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany; (A.F.P.H.); (J.G.); (E.H.); (M.V.); (E.H.B.P.); Serianni, Anthony S.Microbial biosurfactants have become increasingly attractive as promising ingredients for environmentally friendly products. The reasons for this are their generally good performance and biodegradability, low toxicity, production from renewable raw materials, and benefits for the environment perceived by consumers. In this study, we investigated the chemical structure and properties of a novel glycolipid from a new biosurfactant-producing strain, Rouxiella badensis DSM 100043 T . Bioreactor cultivation was performed at 30 °C and pH 7.0 for 28 h using 15 g/L glycerol as a carbon source. The glycolipid was successfully purified from the ethyl acetate extract of the supernatant using medium pressure liquid chromatography (MPLC). The structure of the glycolipid was determined by one- and two-dimensional ( 1 H and 13 C) nuclear magnetic resonance (NMR) and confirmed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI/MS). NMR analysis revealed the hydrophilic moiety as a glucose molecule and the hydrophobic moieties as 3-hydroxy-5-dodecenoic acid and 3-hydroxydecanoic acid, which are linked with the glucose by ester bonds at the C2 and C3 positions. Surface tension measurement with tensiometry indicated that the glucose–lipid could reduce the surface tension of water from 72.05 mN/m to 24.59 mN/m at 25 °C with a very low critical micelle concentration (CMC) of 5.69 mg/L. Moreover, the glucose–lipid demonstrated very good stability in maintaining emulsification activity at pH 2–8, a temperature of up to 100 °C, and a NaCl concentration of up to 15%. These results show that R. badensis DSM 100043 T produced a novel glycolipid biosurfactant with excellent surface-active properties, making it promising for further research or industrial applications.