Landesanstalten
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/30
Browse
Browsing Landesanstalten by Sustainable Development Goals "12"
Now showing 1 - 20 of 31
- Results Per Page
- Sort Options
Publication Breeding progress of disease resistance and impact of disease severity under natural infections in winter wheat variety trials(2021) Laidig, F.; Feike, T.; Hadasch, S.; Rentel, D.; Klocke, B.; Miedaner, T.; Piepho, H. P.Key message: Breeding progress of resistance to fungal wheat diseases and impact of disease severity on yield reduction in long-term variety trials under natural infection were estimated by mixed linear regression models. Abstract: This study aimed at quantifying breeding progress achieved in resistance breeding towards varieties with higher yield and lower susceptibility for 6 major diseases, as well as estimating decreasing yields and increasing disease susceptibility of varieties due to ageing effects during the period 1983–2019. A further aim was the prediction of disease-related yield reductions during 2005–2019 by mixed linear regression models using disease severity scores as covariates. For yield and all diseases, overall progress of the fully treated intensity (I2) was considerably higher than for the intensity without fungicides and growth regulators (I1). The disease severity level was considerably reduced during the study period for mildew (MLD), tan spot (DTR) and Septoria nodorum blotch (ear) (SNB) and to a lesser extent for brown (leaf) rust (BNR) and Septoria tritici blotch (STB), however, not for yellow/stripe rust (YLR). Ageing effects increased susceptibility of varieties strongly for BNR and MLD, but were comparatively weak for SNB and DTR. Considerable yield reductions under high disease severity were predicted for STB (−6.6%), BNR (−6.5%) and yellow rust (YLR, −5.8%), but lower reductions for the other diseases. The reduction for resistant vs. highly susceptible varieties under high severity conditions was about halved for BNR and YLR, providing evidence of resistance breeding progress. The empirical evidence on the functional relations between disease severity, variety susceptibility and yield reductions based on a large-scale multiple-disease field trial data set in German winter wheat is an important contribution to the ongoing discussion on fungicide use and its environmental impact.Publication Can we abandon phosphorus starter fertilizer in maize? Results from a diverse panel of elite and doubled haploid landrace lines of maize (Zea mays L.)(2022) Roller, Sandra; Weiß, Thea M.; Li, Dongdong; Liu, Wenxin; Schipprack, Wolfgang; Melchinger, Albrecht E.; Hahn, Volker; Leiser, Willmar L.; Würschum, TobiasThe importance of phosphorus (P) in agriculture contrasts with the negative environmental impact and the limited resources worldwide. Reducing P fertilizer application by utilizing more efficient genotypes is a promising way to address these issues. To approach this, a large panel of maize (Zea mays L.) comprising each 100 Flint and Dent elite lines and 199 doubled haploid lines from six landraces was assessed in multi-environment field trials with and without the application of P starter fertilizer. The treatment comparison showed that omitting the starter fertilizer can significantly affect traits in early plant development but had no effect on grain yield. Young maize plants provided with additional P showed an increased biomass, faster growth and superior vigor, which, however, was only the case under environmental conditions considered stressful for maize cultivation. Importantly, though the genotype-by-treatment interaction variance was comparably small, there is genotypic variation for this response that can be utilized in breeding. The comparison of elite and doubled haploid landrace lines revealed a superior agronomic performance of elite material but also potentially valuable variation for early traits in the landrace doubled haploid lines. In conclusion, our results illustrate that breeding for P efficient maize cultivars is possible towards a reduction of P fertilizer in a more sustainable agriculture.Publication Changes of microorganism composition in fresh and stored bee pollen from Southern Germany(2021) Friedle, Carolin; D’Alvise, Paul; Schweikert, Karsten; Wallner, Klaus; Hasselmann, MartinAnalysis of plant pollen can provide valuable insights into the existing spectrum of microorganisms in the environment. When harvesting bee-collected pollen as a dietary supplement for human consumption, timely preservation of the freshly collected pollen is fundamental for product quality. Environmental microorganisms contained in freshly collected pollen can lead to spoilage by degradation of pollen components. In this study, freshly collected bee pollen was sampled at different locations and stored under various storage conditions to examine the hypothesis that storage conditions may have an effect on the composition of microorganisms in pollen samples. The samples were analyzed using 16S and 18S amplicon sequencing and characterized by palynological analysis. Interestingly, the bacterial communities between pollen samples from different locations varied only slightly, whereas for fungal community compositions, this effect was substantially increased. Further, we noticed that fungal communities in pollen are particularly sensitive to storage conditions. The fungal genera proportion Cladosporium and Mycosphaerella decreased, while Zygosaccharomyces and Aspergillus increased during storage. Aspergillus and Zygosaccharomyces fractions increased during storage at 30 °C, which could negatively impact the pollen quality if it is used as a dietary supplement.Publication Climate change will influence disease resistance breeding in wheat in Northwestern Europe(2021) Miedaner, Thomas; Juroszek, PeterWheat productivity is threatened by global climate change. In several parts of NW Europe it will get warmer and dryer during the main crop growing period. The resulting likely lower realized on-farm crop yields must be kept by breeding for resistance against already existing and emerging diseases among other measures. Multi-disease resistance will get especially crucial. In this review, we focus on disease resistance breeding approaches in wheat, especially related to rust diseases and Fusarium head blight, because simulation studies of potential future disease risk have shown that these diseases will be increasingly relevant in the future. The long-term changes in disease occurrence must inevitably lead to adjustments of future resistance breeding strategies, whereby stability and durability of disease resistance under heat and water stress will be important in the future. In general, it would be important to focus on non-temperature sensitive resistance genes/QTLs. To conclude, research on the effects of heat and drought stress on disease resistance reactions must be given special attention in the future.Publication Comparative quantitative LC–MS/MS analysis of 13 amylase/trypsin inhibitors in ancient and modern Triticum species(2020) Geisslitz, Sabrina; Longin, C. Friedrich H.; Koehler, Peter; Scherf, Katharina AnneAmylase/trypsin inhibitors (ATIs) are major wheat allergens and they are also implicated in causing non-celiac gluten sensitivity and worsening other inflammatory conditions. With only few studies on ATI contents in different Triticum species available so far, we developed a targeted liquid chromatography-tandem mass spectrometry (LC–MS/MS) method based on stable isotope dilution assays to quantitate the 13 most important ATIs in a well-defined sample set of eight cultivars of common wheat and durum wheat (modern species), as well as spelt, emmer and einkorn (ancient species) grown at three locations in Germany, respectively. Only few ATIs with low contents were detected in einkorn. In contrast, spelt had the highest total ATI contents. Emmer and common wheat had similar total ATI contents, with durum wheat having lower contents than common wheat. Due to the lack of correlation, it was not possible to estimate ATI contents based on crude protein contents. The wheat species had a higher influence on ATI contents than the growing location and the heritability of this trait was high. Despite comparatively low intra-species variability, some cultivars were identified that may be promising candidates for breeding for naturally low ATI contents.Publication Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis(2020) Vahidinasab, Maliheh; Lilge, Lars; Reinfurt, Aline; Pfannstiel, Jens; Henkel, Marius; Morabbi Heravi, Kambiz; Hausmann, RudolfBackground: Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. Results: The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. Conclusions: This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.Publication Degradation of hop latent viroid during anaerobic digestion of infected hop harvest residues(2021) Hagemann, Michael Helmut; Born, Ute; Sprich, Elke; Seigner, Luitgardis; Oechsner, Hans; Hülsemann, Benedikt; Steinbrenner, Jörg; Winterhagen, Patrick; Lehmair, ErichThe citrus bark cracking viroid (CBCVd) was identified as causal agent for a severe stunting disease in hops. Viroids are highly stable parasitic RNAs, which can be easily transmitted by agricultural practices. Since CBCVd has recently been detected in two European countries a growing concern is that this pathogen will further spread and thereby threaten the European hop production. Biogas fermentation is used to sanitize hop harvest residues infected with pathogenic fungi. Consequently, the aim of this study was to test if biogas fermentation can contribute to viroid degradation at mesophilic (40 °C) and thermophilic (50 °C) conditions. Therefore, a duplex reverse transcription real-time PCR analysis was developed for CBCVd and HLVd detection in biogas fermentation residues. The non-pathogenic hop latent viroid (HLVd) was used as viroid model for the pathogenic CBCVd. The fermentation trials showed that HLVd was significantly degraded after 30 days at mesophilic or after 5 days at thermophilic conditions, respectively. However, sequencing revealed that HLVd was not fully degraded even after 90 days. The incubation of hop harvest residues at different temperatures between 20 and 70 °C showed that 70 °C led to a significant HLVd degradation after 1 day. In conclusion, we suggest combining 70 °C pretreatment and thermophilic fermentation for efficient viroid decontamination.Publication Diacetoxyscirpenol, a Fusarium exometabolite, prevents efficiently the incidence of the parasitic weed Striga hermonthica(2022) Anteyi, Williams Oyifioda; Klaiber, Iris; Rasche, FrankBackground: Certain Fusarium exometabolites have been reported to inhibit seed germination of the cereal-parasitizing witchweed, Striga hermonthica , in vitro . However, it is unknown if these exometabolites will consistently prevent S. hermonthica incidence in planta . The study screened a selection of known, highly phytotoxic Fusarium exometabolites, in identifying the most potent/efficient candidate (i.e., having the greatest effect at minimal concentration) to completely hinder S. hermonthica seed germination in vitro and incidence in planta , without affecting the host crop development and yield. Results: In vitro germination assays of the tested Fusarium exometabolites (i.e., 1,4-naphthoquinone, equisetin, fusaric acid, hymeglusin, neosolaniol (Neo), T-2 toxin (T-2) and diacetoxyscirpenol (DAS)) as pre- Striga seed conditioning treatments at 1, 5, 10, 20, 50 and 100 µM, revealed that only DAS, out of all tested exometabolites, completely inhibited S. hermonthica seed germination at each concentration. It was followed by T-2 and Neo, as from 10 to 20 µM respectively. The remaining exometabolites reduced S. hermonthica seed germination as from 20 µM ( P < 0. 0001). In planta assessment (in a S. hermonthica -sorghum parasitic system) of the exometabolites at 20 µM showed that, although, none of the tested exometabolites affected sorghum aboveground dry biomass ( P > 0.05), only DAS completely prevented S. hermonthica incidence. Following a 14-d incubation of DAS in the planting soil substrate, bacterial 16S ribosomal RNA (rRNA) and fungal 18S rRNA gene copy numbers of the soil microbial community were enhanced; which coincided with complete degradation of DAS in the substrate. Metabolic footprinting revealed that the S. hermonthica mycoherbicidal agent, Fusarium oxysporum f. sp. strigae (isolates Foxy-2, FK3), did not produce DAS; a discovery that corresponded with underexpression of key genes (Tri5, Tri4) necessary for Fusarium trichothecene biosynthesis ( P < 0.0001). Conclusions: Among the tested Fusarium exometabolites, DAS exhibited the most promising herbicidal potential against S. hermonthica . Thus, it could serve as a new biocontrol agent for efficient S. hermonthica management. Further examination of DAS specific mode of action against the target weed S. hermonthica at low concentrations (≤ 20 µM), as opposed to non-target soil organisms, is required.Publication Do lower nitrogen fertilization levels require breeding of different types of cultivars in triticale?(2022) Neuweiler, Jan E.; Trini, Johannes; Maurer, Hans Peter; Würschum, TobiasBreeding high-yielding, nitrogen-efficient crops is of utmost importance to achieve greater agricultural sustainability. The aim of this study was to evaluate nitrogen use efficiency (NUE) of triticale, investigate long-term genetic trends and the genetic architecture, and develop strategies for NUE improvement by breeding. For this, we evaluated 450 different triticale genotypes under four nitrogen fertilization levels in multi-environment field trials for grain yield, protein content, starch content and derived indices. Analysis of temporal trends revealed that modern cultivars are better in exploiting the available nitrogen. Genome-wide association mapping revealed a complex genetic architecture with many small-effect QTL and a high level of pleiotropy for NUE-related traits, in line with phenotypic correlations. Furthermore, the effect of some QTL was dependent on the nitrogen fertilization level. High correlations of each trait between N levels and the rather low genotype-by-N-level interaction variance showed that generally the same genotypes perform well over different N levels. Nevertheless, the best performing genotype was always a different one. Thus, selection in early generations can be done under high nitrogen fertilizer conditions as these provide a stronger differentiation, but the final selection in later generations should be conducted with a nitrogen fertilization as in the target environment.Publication Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material(2021) Galán, Rodrigo José; Bernal-Vasquez, Angela-Maria; Jebsen, Christian; Piepho, Hans-Peter; Thorwarth, Patrick; Steffan, Philipp; Gordillo, Andres; Miedaner, ThomasKey message: Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation is required. Abstract: The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indirect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ( ) and genetic relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands (410 nm–993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities (0.41 – 0.61) than GBLUP (0.14 – 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY and DMY), suggesting that HBLUP is much less affected by relatedness and . However, the predictive power of both models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environmental connectivity is needed.Publication Effects of harvest date and ensiling additives on the optimized ensiling of Silphium perfoliatum to prevent faulty fermentation(2024) Baumgart, Marian; Hülsemann, Benedikt; Sailer, Gregor; Oechsner, Hans; Müller, Joachim; Hu, Wei; Zhou, Zhiguo; Zhao, WenqingSilphium perfoliatum , an energy crop with a high fiber content but low concentrations of fermentable carbohydrates, presents challenges for complete fermentation in biogas production. To overcome this, a bioeconomic approach proposes the use of the fibers for paper and board production, which requires high-quality silage with minimal butyric acid, which affects the marketability of the fibers. This study aims to optimize the silaging process of Silphium perfoliatum by investigating the effects of harvest date, bacterial cultures and additives on fermentation results. Laboratory experiments were conducted to evaluate the effect of three harvest dates on fermentation acid composition, with a focus on increasing lactic acid production to inhibit butyric acid formation. Results indicate that an early harvest date (early September) is critical for achieving stable fermentation and minimizing ensiling losses. The addition of sugar-rich additives, such as syrup, was found to be essential, especially for later harvest dates. Despite these interventions, a late harvest (early November) consistently resulted in suboptimal fermentation. The results suggest that optimizing harvest timing and incorporating appropriate additives are key strategies for producing high quality silage and ensuring the suitability of Silphium perfoliatum fibers for industrial applications.Publication Effects of pretreatment with a ball mill on methane yield of horse manure(2023) Heller, René; Roth, Peter; Hülsemann, Benedikt; Böttinger, Stefan; Lemmer, Andreas; Oechsner, HansLignocellulosic biomass is an abundant organic material, which can be utilised in biogas plants for sustainable production of biogas. Since these substrates usually have high lignin contents and consist of rather elongated particles, a special pretreatment is required for an economical and process-stable utilisation in the biogas plant. The mechanical pretreatment of horse manure was carried out with the prototype of a ball mill at different speeds. The aim of ball milling is to comminute the substrate and disintegrate the lignocellulosic bond. Mechanical pretreatment in the ball mill resulted in a significant increase in specific methane yield of more than 37% in anaerobic batch digestion (up to 243 LCH4 kgVS−1) of horse manure. The kinetics of the methane gas formation process was analysed by a modified Gompertz model fitting and showed a higher methane production potential and maximum daily methane production rate as well as a lower duration of the lag phase after pretreatment at 6 rpm. This was further confirmed by sieve analyses, which showed a significant reduction of particle size compared to the untreated variant. Thus, the use of the ball mill increases the specific methane yield and improves the fermentation of lignocellulosic substrates such as horse manure.Publication Ergot infection in winter rye hybrids shows differential contribution of male and female genotypes and environment(2020) Kodisch, Anna; Wilde, Peer; Schmiedchen, Brigitta; Fromme, Franz-Joachim; Rodemann, Bernd; Tratwal, Anna; Oberforster, Michael; Wieser, Franz; Schiemann, Andrea; Jørgensen, Lise Nistrup; Miedaner, ThomasContamination of ergot (Claviceps purpurea) in grains continues to be a problem in outcrossing plants like rye, especially in years of favorable infection (cold, rainy) conditions. The problem is not the yield loss, but the contamination of the grains by toxic alkaloids leading to strict critical values within the European Union. This study was conducted to (1) partition the variation of genotype, inoculation treatments and environment for ergot infection of 12 winter rye genotypes, (2) the effect of varying proportions of a non-adapted restorer gene on ergot, and to (3) reveal within the genotype the relative importance of male pollen fertility and female receptivity on the ergot reaction of single crosses bearing different restorer genes. In total, 12 rye genotypes and two factorial crossing designs with each of five female and four male lines differing in their restorer genes were tested by artificial infection in up to 16 environments in four European countries. High and significant genotypic variation regarding the ergot severity and pollen-fertility restoration were observed. Furthermore significant general combining ability and specific combining ability variances and interactions with environment were obtained. The pollen-fertility restoration of the male had by far the highest importance for ergot severity, the female component, however, also revealed a significant effect. In conclusion, selecting for superior restoration ability is the most promising way on the short term, but there are also possibilities to improve the maternal site in future breeding programs.Publication Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools(2021) Gaikpa, David Sewordor; Kessel, Bettina; Presterl, Thomas; Ouzunova, Milena; Galiano-Carneiro, Ana L.; Mayer, Manfred; Melchinger, Albrecht E.; Schön, Chris-Carolin; Miedaner, ThomasFusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled haploid lines derived from two European maize landraces, “Kemater Landmais Gelb” (KE) and “Petkuser Ferdinand Rot” (PE). The two landraces were analyzed individually using genome-wide association studies and genomic selection (GS). The lines were genotyped with a 600-k maize array and phenotyped for GER severity, days to silking, plant height, and seed-set in four environments using artificial infection with a highly aggressive Fg isolate. High genotypic variances and broad-sense heritabilities were found for all traits. Genotype-environment interaction was important throughout. The phenotypic (r) and genotypic (rg) correlations between GER severity and three agronomic traits were low (r= − 0.27 to 0.20; rg = − 0.32 to 0.22). For GER severity, eight QTLs were detected in KE jointly explaining 34% of the genetic variance. In PE, no significant QTLs for GER severity were detected. No common QTLs were found between GER severity and the three agronomic traits. The mean prediction accuracies (p) of weighted GS (wRR-BLUP) were higher than p of marker-assisted selection (MAS) and unweighted GS (RR-BLUP) for GER severity. Using KE as the training set and PE as the validation set resulted in very low p that could be improved by using fixed marker effects in the GS model.Publication Fed-batch bioreactor cultivation of Bacillus subtilis using vegetable juice as an alternative carbon source for lipopeptides production: a shift towards a circular bioeconomy(2024) Gugel, Irene; Vahidinasab, Maliheh; Benatto Perino, Elvio Henrique; Hiller, Eric; Marchetti, Filippo; Costa, Stefania; Pfannstiel, Jens; Konnerth, Philipp; Vertuani, Silvia; Manfredini, Stefano; Hausmann, Rudolf; Gudiña, EduardoIn a scenario of increasing alarm about food waste due to rapid urbanization, population growth and lifestyle changes, this study aims to explore the valorization of waste from the retail sector as potential substrates for the biotechnological production of biosurfactants. With a perspective of increasingly contributing to the realization of the circular bioeconomy, a vegetable juice, derived from unsold fruits and vegetables, as a carbon source was used to produce lipopeptides such as surfactin and fengycin. The results from the shake flask cultivations revealed that different concentrations of vegetable juice could effectively serve as carbon sources and that the fed-batch bioreactor cultivation strategy allowed the yields of lipopeptides to be significantly increased. In particular, the product/substrate yield of 0.09 g/g for surfactin and 0.85 mg/g for fengycin was obtained with maximum concentrations of 2.77 g/L and 27.53 mg/L after 16 h, respectively. To conclude, this study provides the successful fed-batch cultivation of B. subtilis using waste product as the carbon source to produce secondary metabolites. Therefore, the consumption of agricultural product wastes might be a promising source for producing valuable metabolites which have promising application potential to be used in several fields of biological controls of fungal diseases.Publication Glucoselipid biosurfactant biosynthesis operon of Rouxiella badensis DSM 100043T: screening, identification, and heterologous expression in Escherichia coli(2025) Harahap, Andre Fahriz Perdana; Treinen, Chantal; Van Zyl, Leonardo Joaquim; Williams, Wesley Trevor; Conrad, Jürgen; Pfannstiel, Jens; Klaiber, Iris; Grether, Jakob; Hiller, Eric; Vahidinasab, Maliheh; Perino, Elvio Henrique Benatto; Lilge, Lars; Burger, Anita; Trindade, Marla; Hausmann, Rudolf; Seo, Myung-JiRouxiella badensis DSM 100043T had been previously proven to produce a novel glucoselipid biosurfactant which has a very low critical micelle concentration (CMC) as well as very good stability against a wide range of pH, temperature, and salinity. In this study, we performed a function-based library screening from a R. badensis DSM 100043T genome library to identify responsible genes for biosynthesis of this glucoselipid. The identified open reading frames (ORFs) were cloned into several constructs in Escherichia coli for gene permutation analysis and the individual products were analyzed using high-performance thin-layer chromatography (HPTLC). Products of interest from positive expression strains were purified and analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) for further structure elucidation. Function-based screening of 5400 clones led to the identification of an operon containing three ORFs encoding acetyltransferase GlcA (ORF1), acyltransferase GlcB (ORF2), and phosphatase/HAD GlcC (ORF3). E. coli pCAT2, with all three ORFs, resulted in the production of identical R. badensis DSM 100043T glucosedilipid with Glu-C10:0-C12:1 as the main congener. ORF2-deletion strain E. coli pAFP1 primarily produced glucosemonolipids, with Glu-C10:0,3OH and Glu-C12:0 as the major congeners, predominantly esterified at the C-2 position of the glucose moiety. Furthermore, fed-batch bioreactor cultivation of E. coli pCAT2 using glucose as the carbon source yielded a maximum glucosedilipid titer of 2.34 g/L after 25 h of fermentation, which is 55-fold higher than that produced by batch cultivation of R. badensis DSM 100043T in the previous study.Publication High abundance of pyrrolizidine alkaloids in bee pollen collected in July 2019 from Southern Germany(2022) Friedle, Carolin; Kapp, Thomas; Wallner, Klaus; Alkattea, Raghdan; Vetter, WalterPyrrolizidine alkaloids (PA) are secondary plant defense compounds and known pre-toxins when containing a 1,2-double bond. They are commonly produced by various plants and may thus be present in bee pollen which may be consumed by humans as food supplements. In this study, PA were determined in bee pollen samples from 57 locations in Southern Germany sampled by means of pollen traps in July 2019. Samples were analyzed by using palynological methodology and solid-phase extraction (SPE) followed by LC–MS/MS. In total, 52 pollen samples featured total pyrrolizidine alkaloids (ΣPA) with concentrations up to 48,000 ng/g bee pollen, while the N-oxides (NO) echinatine-NO and rinderine-NO clearly dominated. In contrast, the palynological analysis only detected 33 samples with pollen from PA-producing plants. Accordingly, the results showed that palynological analysis is not sufficient to determine PA in pollen. In addition, a risk assessment was followed to estimate the risk of the detected PA concentrations to humans.Publication Integration of genotypic, hyperspectral, and phenotypic data to improve biomass yield prediction in hybrid rye(2020) Galán, Rodrigo José; Bernal-Vasquez, Angela-Maria; Jebsen, Christian; Piepho, Hans-Peter; Thorwarth, Patrick; Steffan, Philipp; Gordillo, Andres; Miedaner, ThomasIntegrating cutting-edge technologies is imperative to sustainably breed crops for a growing global population. To predict dry matter yield (DMY) in winter rye (Secale cereale L.), we tested single-kernel models based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices, a multi-kernel model combining both matrices and a bivariate model fitted with plant height as a secondary trait. In total, 274 elite rye lines were genotyped using a 10 k-SNP array and phenotyped as testcrosses for DMY and plant height at four locations in Germany in two years (eight environments). Spectral data consisted of 400 discrete narrow bands ranging between 410 and 993 nm collected by an unmanned aerial vehicle (UAV) on two dates on each environment. To reduce data dimensionality, variable selection of bands was performed, resulting in the least absolute shrinkage and selection operator (Lasso) as the best method in terms of predictive abilities. The mean heritability of reflectance data was moderate ( h2 = 0.72) and highly variable across the spectrum. Correlations between DMY and single bands were generally significant (p < 0.05) but low (≤ 0.29). Across environments and training set (TRN) sizes, the bivariate model showed the highest prediction abilities (0.56–0.75), followed by the multi-kernel (0.45–0.71) and single-kernel (0.33–0.61) models. With reduced TRN, HBLUP performed better than GBLUP. The HBLUP model fitted with a set of selected bands was preferred. Within and across environments, prediction abilities increased with larger TRN. Our results suggest that in the era of digital breeding, the integration of high-throughput phenotyping and genomic selection is a promising strategy to achieve superior selection gains in hybrid rye.Publication Intercontinental trials reveal stable QTL for Northern corn leaf blight resistance in Europe and in Brazil(2020) Galiano-Carneiro, Ana L.; Kessel, Bettina; Presterl, Thomas; Miedaner, ThomasNorthern corn leaf blight (NCLB) is one of the most devastating leaf pathogens in maize (Zea mays L.). Maize cultivars need to be equipped with broad and stable NCLB resistance to cope with production intensification and climate change. Brazilian germplasm is a great source to increase low NCLB resistance levels in European materials, but little is known about their effect in European environments. To investigate the usefulness of Brazilian germplasm as NCLB resistance donors, we conducted multi-parent QTL mapping, evaluated the potential of marker-assisted selection as well as genome-wide selection of 742 F1-derived DH lines. The line per se performance was evaluated in one location in Brazil and six location-by-year combinations (= environments) in Europe, while testcrosses were assessed in two locations in Brazil and further 10 environments in Europe. Jointly, we identified 17 QTL for NCLB resistance explaining 3.57–30.98% of the genotypic variance each. Two of these QTL were detected in both Brazilian and European environments indicating the stability of these QTL in contrasting ecosystems. We observed moderate to high genomic prediction accuracies between 0.58 and 0.83 depending on population and continent. Collectively, our study illustrates the potential use of tropical resistance sources to increase NCLB resistance level in applied European maize breeding programs.Publication Investigating the environmental Kuznets curve between economic growth and chemical fertilizer surpluses in China: a provincial panel cointegration approach(2022) Yu, Xiaomin; Schweikert, Karsten; Doluschitz, ReinerThis study investigated the relationship between fertilizer nitrogen (N) and phosphate (P) surpluses and economic development on the regional level in China. With a balanced panel dataset covering 30 provinces of mainland China from 1988 to 2019, we employed panel cointegrating polynomial regression (CPR) analysis using fully modified OLS (FM-OLS) estimators. Our results suggested that all provinces exhibit a long-run cointegrated relationship between fertilizer surpluses and real per capita gross regional product (GRP). A total of 22 provinces out of 30 showed a significant inverted U-shaped environmental Kuznets curve (EKC). Among those, 14 provinces are considered to have reached the peak and 8 provinces are considered to be before the peak. The group-mean turning points on the EKC are CNY 7022, CNY 9726, CNY 4697, CNY 3749, and CNY 5588 per capita GRP (1978 = 100) for the Northeast, Northcentral, Middle, and lower reaches of the Yangtze River, Southwest and Northwest China, respectively. The overall turning point of China is CNY 6705 per capita real gross domestic product (GDP), which was reached in circa 2012. This shows a general improvement of chemical fertilizer management in China. However, six provinces still exhibit linear growth in fertilizer surpluses when the economy grows. These regions are characterized by high cash-crop ratios and are mostly located along the southeast coast. Therefore, more effort and attention should be given to these regions to promote further fertilizer reduction. At the same time, nutrient use efficiencies should be improved, especially for cash crops such as fruit and vegetables.
