Institut für Kulturpflanzenwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/12
Browse
Browsing Institut für Kulturpflanzenwissenschaften by Subject "1-MCP"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Optimizing pome fruits storage(2024) Balkees, Basem Mahmoud; Zörb, ChristianHorticultural perishables are prone to fast deterioration and high losses. As the volume of production increases, further challenges are imposed to preserve these valuable foods in terms of quantity and quality. Accelerated development in science and applied technologies has helped to radically prolong the useful post-harvest life of horticultural produce. Notable success has been achieved with apples and pears as a result of their comparatively higher storability. Effective procedures and techniques have been developed to handle these fruits, including pre- and post-harvest physical and chemical treatments, in conjunction with the cutting-edge storage systems. However, certain procedures cannot be universally applicable. Considerations such as genotypic differences, climatic variations, and production factors necessitate adaptation of post-harvest practices to accommodate changing variables. This thesis describes the findings of experiments conducted as a contribution to advance preservation practices for apples and pears. Furthermore, we sought to investigate the biological actions underlying changes in fruit quality during storage and how these were influenced by various treatments. The first experiment was conducted to preserve the quality of late-harvested ‘Galaxy’ apples during extended storage. The effects of 1-methylcyclopropene (1 MCP) treatment and storage conditions on postharvest quality were analysed. Alongside quality measures, indicators like ethylene production, respiration rate, 1 aminocyclopropane-1-carboxylic acid oxidase (ACO) activity, and membrane permeability were assessed. After 7 months storage and 7 days shelf-life, apples subjected to 1-MCP and controlled atmosphere (CA) exhibited reduced ethylene production, respiration rate, and ACO activity compared to untreated or regular atmosphere counterparts. The combination of controlled atmosphere and pre-storage 1 MCP was the most effective in lowering ACO activity. Irrespective of conditions, 1 MCP curtailed ethylene production, respiration rate, and ACO activity during shelf-life, maintaining fruit firmness and slowing acidity loss. Only controlled atmosphere preserved quality and minimized disorders for optimally harvested apples, not late-harvested ones. None of the treatments maintained late-harvested apples quality after long-term storage plus shelf-life. The second experiment evaluated the effects of two ethanol vapor doses (250 or 500 ppm) or 1 MCP (650 ppb) with or without ethylene application (150 ppm) on the metabolism and quality of the apple cultivars ‘Elstar’ and ‘Nicoter’, over 14 d of holding at room temperature (20 ± 2 °C). For both cultivars studied, ethanol vapor treatments, especially 500 ppm, slowed the ripening of apples and inhibited the effect of applied ethylene on the ethylene production and respiration, but not as much as the 1 MCP treatment in ‘Nicoter’ apples. Ethanol application also resulted in higher succinate, malate and total organic acids concentrations. Ethanol application significantly reduced the sucrose conversion to glucose and fructose, while the ethanol + ethylene treatment resulted in high total sugars, fructose and sorbitol concentration after 14 d at 20 °C. The ethanol application (500 ppm) also affected conversion of succinate to fumarate, suggesting the succinate dehydrogenase activity as one possible action point of ethanol on the apple fruit metabolism. The combination of ethanol + ethylene treatments had a different response as compared to their isolated application, affecting sugars and organic acids metabolism differently. Fruit treated with ethanol vapor maintained lower electrolyte leakage, higher flesh firmness, greener color and had more sound fruit. However, its application increased the pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activity and also enhanced acetaldehyde and ethyl acetate accumulation, but in concentrations below the odor threshold reported in the literature. The 1-MCP treatment increased decay incidence compared to the other treatments, reducing the amount of sound fruit in ‘Nicoter’ apples, but allowed higher acidity maintenance after 14 d holding at room temperature. There was no incidence of external and internal physiological disorders in either of the cultivars. In a third experiment, we explored the effects of the interaction between controlled atmosphere and 1-MCP treatment on ‘Alexander Lucas’ pears in storage, aiming to minimize internal storage disorders. Following treatment with 1-MCP at 300 ppb, the fruit were stored either at -0.5 or 1.0 °C in regular air or in CA (2.0 kPa O2 plus <0.7 kPa CO2). After six months of storage, superficial scald did not develop in fruit. The highest occurrence of flesh browning (72.2 %) was observed in air-stored fruit at -0.5 °C without 1-MCP treatment. Storage in regular air at 1.0 °C combined with 1-MCP resulted in 88.8 % sound fruit. Conversely, 1-MCP increased the incidence of flesh and core browning under CA conditions. Both 1-MCP and CA maintained greener skin color and higher titratable acidity. No significant differences were found for fruit firmness, total soluble solids and ascorbic acid content between the treatments. In conclusion, the quality of ‘Alexander Lucas’ pear was best maintained during six months storage under regular air at 1.0 °C combined with 300 ppb 1-MCP treatment.Publication The effect of picking time and postharvest treatments on fruit quality of mango (Mangifera indica L.)(2012) Vu, Hai Thanh; Wünsche, Jens NorbertMango production in Northern Vietnam is mainly in the upland areas. The two locally grown cultivars are ?Tron? and ?Hoi? with limited yearly production due to poor traditional crop management practices by ethnic minorities. Both cultivars possess excellent fruit aroma and taste properties, yet there is a need to further improve fresh fruit quality to meet high domestic demand and consumer expectations in the market place, thereby exploiting more products of preferred quality. Assessment of quality parameter and consumer preference can assist to precisely determine optimum harvest time and suitable storage regime for a given cultivar. Furthermore, specific postharvest treatments such as applications of hot water, 1-MCP or ethrel for manipulating fruit ripening and shelf-life may help to enhance economic returns and thus to make mango production in the long term more profitable. The research work on both cultivars was carried out on farmer orchards near the township of Yen Chau, Son La Province, Vietnam, in 2007, 2008 and 2009. The research objectives were to (1) monitor internal and external fruit quality changes in relation to varying select picks throughout the harvest period and to a range of storage temperatures; (2) investigate the effect of 1-MCP on various fruit ripening parameters for maintaining fruit quality and extending shelf-life; (3) evaluate applications of aqueous ethrel solution in cool storage for accelerating fruit ripening; and (4) assess the responses of several external fruit criteria to hot water treatments and subsequent cool storage. At each select pick, fruit was immediately taken to the laboratories at Hanoi University of Agriculture for fruit quality assessment at harvest, and following various postharvest treatments, ex-store. Chemical analyses of fruit tissue samples were performed at the University of Hohenheim. Various physicochemical quality parameters such as fruit weight, skin disorder, skin and flesh colour, flesh firmness, total soluble solids concentration, titrable acidity, as well as concentrations of soluble sugars, starch, vitamin C and carotenoids were evaluated. The results of the first part indicated that key quality criteria for determining the optimal harvest time of ?Tron? and ?Hoi? were determined. ?Hoi? fruit was at best quality when harvested late, preferably in the 2nd or 3rd pick, whereas 1st pick fruit was relatively immature with less than 8% total soluble solid concentration and did not properly ripen when stored at 12ºC. In contrast, ?Tron? fruit should be picked early in the harvest period since the 3rd pick with tree-ripened fruit was only suitable for direct local marketing without storage time. The results also indicated that ?Tron? fruit of the 1st and 2nd pick and ?Hoi? fruit of 2nd and 3rd pick continued the ripening process to full maturity when stored at 12ºC. Consequently, fruit from these picks were suitable for distant markets when handled within 5-10 days at 20ºC or up to 20 days at 12ºC. Generally, ?Hoi? had a greater postharvest potential than ?Tron? but ex-store fruit quality of both cultivars was best with flesh firmness ranging from 70.5 to 96.1 N, skin hue angle from 71.4º to 85.4º, flesh hue angle from 70.1º to 78.5º and total soluble solid concentration from 16.8 to 19.6%. The results of the second part clearly showed that 1-MCP is a useful tool to delay fruit ripening and in particular softening of both cultivars during the postharvest period. Both cultivars treated with 1000 nL?L-1 1-MCP delayed considerably the decrease in TA, skin and flesh hue angle as well as the loss of flesh firmness in the 1st and 2nd pick for about 10 days of storage at 12ºC compared to control. Both cultivars were more sensitive to 1-MCP applications in 1st rather than the 2nd pick. In addition, 1-MCP applications were more effective on ?Tron? fruit than ?Hoi? fruit. The results of the third part indicate that 0.8% ethrel accelerated fruit ripening on fruit from the 1st pick of both cultivars while stored at 12ºC. Ex-store fruit quality was acceptable and met consumer preference. The efficacy of ethrel application on ?Hoi? fruit was greater than that on ?Tron? fruit. The results of the fourth part showed that the degree of skin disorder was considerably decreased when ?Tron? and ?Hoi? fruit were treated with either 48ºC or 50ºC water for 6 min and stored at 12ºC. This treatment delayed skin colour development of ?Hoi? when compared to other treatments. In conclusion, this study demonstrates that lack of proper whole chain fruit quality management systems is the key factor for the limited production of mangoes in Northern Vietnam. Improved fruit quality management can result in more consistent and higher quality particularly for distant markets. Based on the results of this work, ?Tron? and ?Hoi? fruit should be harvested using well-defined and recommended harvest quality indices and thereafter undergo appropriate postharvest management systems to attain higher fruit quality. This will help farmers to better manipulate fruit ripening processes, to deliver high quality fruit to the market and to achieve greater returns and thus livelihoods.