Fakultät Naturwissenschaften
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/1
Biologie, Ernährungs-wissenschaften und Lebensmittelwissenschaften sind die Schwerpunkte der Fakultät. Die Forschung befasst sich mit Schlüsselthemen der Life Sciences.
Homepage: https://natur.uni-hohenheim.de/
Browse
Browsing Fakultät Naturwissenschaften by Subject "3DVAR"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Model evaluation and data assimilation impact studies in the framework of COPS(2012) Schwitalla, Thomas; Wulfmeyer, VolkerThe goal of this thesis was the study of new approaches for improving and investigating quantitative precipitation forecasting (QPF), e.g., by optimizing model resolution, physics combination, and data assimilation. A forecasting system based on the Mesoscale Model 5 (MM5) was compared against other operational numerical weather prediction models from Meteo France, MeteoSwiss and the German Weather Service primarily with respect to daytime precipitation. First, a notable daytime dry bias was observed. It appears to be the result of a too small high-resolution domain and the switched-off convection parameterization from the second to the innermost domain. Even the application of a 4-dimensional variational data assimilation (4DVAR) with GPS slant total delays (STD) does not solve this problem due to inconsistent model physics between the 4DVAR and the forecasting model. Nevertheless, the MM5 is in good agreement with the shape of the observed diurnal cycle after the spin-up phase. As the development of the MM5 was suspended, a transition to the new Weather Research and Forecasting (WRF) model system was made after the D-PHASE period (end of 2007). This system features state-of-the-art physics packages and also a variational data assimilation system. As a new observing system, GPS Zenith Total Delay (ZTD) data from Central Europe were incorporated into the 3-dimensional variational data assimilation (3DVAR) system to further improve the initial water vapor field. A first study with this system revealed an improvement of the integrated water vapor RMSE of about 15% and a small but positive impact on the spatial and quantitative precipitation forecast. Additionally, the importance of assimilating upper air observations and the necessity to select a large, convection permitting model domain emerged. Finally a rapid update cycle (RUC) approach, comparable to operational forecast centers, has been developed for a convection-permitting configuration of the WRF model. The system is capable to assimilate radar observations from Germany and France, GPS-ZTD data and satellite radiances and can be applied even for near real-time applications. First experiments with this system show promising results in comparison to other operational models.