Institut für Pflanzenernährung
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/41
Browse
Browsing Institut für Pflanzenernährung by Subject "Ammoniak"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Emission von Ammoniak (NH₃) und Lachgas (N₂O) von landwirtschaftlich genutzten Böden in Abhängigkeit von produktionstechnischen Maßnahmen(2003) Leick, Barbara Cornelia Elisabeth; Engels, ChristofThe goal of this research was to quantify event-based NH₃ and N₂O emissions in various farming systems and to propose emission-avoidance strategies. Emission measurements were made on pasture land (Allgaeu, Hohenheim) and on cultivated fields (Hohenheim, Biberach). These measurements were made after applying organic and mineral fertilizers, after incorporating crop residues, and after freeze / thaw cycles; furthermore, experiments were conducted using container plants of different species (leguminous, and non-leguminous) and different fertilizers. NH3 emissions data was gathered under field conditions using the wind tunnel method and the IHF method (Integrated Horizontal Flux). In the container experiments, data was gathered by taking photo-acoustic measurements. N₂O emissions data was compiled using closed chambers (Hohenheim measuring chambers) and using an open-chamber system in which an exchange occurred between the air in the chambers and the ambient air. N₂O levels were determined using a gas chromatograph or by photo-acoustic measurements. The NH₃ emissions after applying liquid manure to pasture land varied between 11 and 40% of the total nitrogen applied. Emission levels of less than 20% occurred when it rained shortly after spreading liquid manure causing it to be washed into the soil. The application technique (splash plate, surface banding and liquid manure injection) had no apparent influence on NH₃ emissions under these conditions. The N₂O emissions after liquid manure fertilization on pasture land in Hohenheim were 0.16% of the total NH4+-N. In comparison, the emissions in the Allgäu were between 1.7 and 2.3% of the total NH4+-N applied. Liquid manure injection led to higher emissions as did application using a splash plate. In the Allgäu, the N₂O emissions after mineral-nitrogen fertilization were markedly lower (0.3 to 0.8% of applied N) than after liquid manure application. In Hohenheim, the nitrogen form had no distinct influence on the emissions (<0.16% of applied N). Definitive differences between the two locations were observed during the experiments. These differences were based on N₂O losses due to the respective soil and weather conditions (precipitation, temperature). The higher emissions after applying liquid manure compared to those after applying mineral nitrogen fertilizer are explainable in that aside from the nitrogen compounds found in liquid manure, carbon compounds which promote the microbial formation of N₂O were also entering the soil. The NH3 emissions after liquid manure fertilization on cultivated fields using a splash plate varied between 25 and 35% of the applied NH4+-N. By using a slurry cultivator which combines application with immediate incorporation, the NH3 emissions can be clearly reduced to 6% of the applied NH4+-N. Application with a drag hose, in comparison to using a splash plate, did not always result in an emission reduction; however, in taller plants, a readable emission reduction was measured. The N₂O emissions after liquid manure application on cultivated fields varied between 0.1 and 2.2% of the applied NH4+-N whereby the emissions after guided application with the drag hose were always higher than after using a splash plate. Mineral fertilizer had lower N2O emissions (<0.13% of applied N), especially when ammonium fertilizer was brought out in combination with a nitrification inhibitor. The incorporation of green manure crops notedly increased N₂O emissions. N₂O emission after the incorporation of legumes was especially high. In the container experiments, a diurnal rhythm of the N₂O and NH₃ flows in growing rape and vetch was observed. This indicated a stomatal flow of these gaseous nitrogen forms. N₂O emissions also occurred outside of the vegetation period at temperatures between 0 and 5°C, with the N₂O emissions from the nitrogen fertilized parcels being greater than the emissions from the unfertilized parcels. In container experiments, the N₂O emissions after freeze / thaw cycles were greater from white clover than from perennial rye grass. In fallow soil columns, the N₂O emissions after freeze / thaw cycles were especially high if the content of nitrate and water-soluble organic carbon in the soil was large. The results of this research show that the emission of nitrogen-containing compounds after organic and inorganic fertilization can be reduced through application methods (immediate incorporation), appropriate fertilization technology (addition of nitrification inhibitors), but also through fertilizer application under favourable weather conditions to include seasonal and volume adjustment of the fertilizer based on the growth requirements of the plants. Because high N₂O emissions can also occur at low temperatures, cultivation practices that influence the availability of mineral nitrogen and easily degradable organic substances in the soil during cold weather have a large impact on the N₂O emissions from agricultural land.