Institut für Pflanzenproduktion und Agrarökologie in den Tropen und Subtropen
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/15
Browse
Browsing Institut für Pflanzenproduktion und Agrarökologie in den Tropen und Subtropen by Subject "Agroforestry"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Ecophysiological and agronomic response of Abaca (Musa textilis) to different resource conditions in Leyte Island, Philippines(2012) Bande, Marlito M.; Sauerborn, JoachimAbaca (Musa textilis Née) is closely related to edible bananas (Musa acuminata Colla and M. balbisiana Colla). Abaca usually thrives in the shade beneath tall trees, especially important for protecting the young plants from the sun and the older, taller plants from wind breakage. However, there is still disagreement on the need for shade trees in abaca cultivation. Hence, this study was conducted to ascertain the ecophysiological and agronomic response of abaca grown in different shade conditions, water and nutrient management systems in Leyte Island, Philippines. The objectives of the study were to: (a) explore the influence of shade and irrigation-fertilization on the morphological and physiological performance of abaca; (b) investigate the effect of reducing light intensities by 30%, 40% and 50% of full sunlight on fiber yield and fiber quality; (c) determine the optimum light requirement of abaca plants to attain the optimum yield without affecting the quality of the fiber for industrial use; (d) examine the effect of shade and irrigation-fertilization on biomass production and allocation as well as on NPK absorption and distribution among abaca organs; and (e) find out if irrigation and fertilization could offset the effect of shade on biomass production, NPK absorption and fiber yield of abaca. Field trials were established where light infiltration was reduced by 30%, 40%, and 50% of full sunlight using polypropylene shade nets. Irrigation was applied at a rate of 5 liters plant-1 application-1 day-1. The frequency of irrigation was applied two times per day at seedling stage (1-3 months after planting), three times at the early vegetative stage (4-6 MAP), four times at the late vegetative stage (7-9 MAP), and five times at flagleaf stage (10-12 MAP). On the other hand, placement application of N, P2O5, K2O using complete fertilizer was done at 14 g plant-1 in every three months for the first six months and was increased to 40 g plant-1 in every three months for the next six months after planting. The results of this study showed that plant height, cumulative leaf area, pseudostem length and base girth of abaca significantly improved when the light was further reduced to 50%. The application of NPK fertilizer and combination of irrigation-fertilization further enhanced the growth performance of abaca. Statistical analysis showed that shade, NPK fertilization and combination of irrigation-fertilization positively affected dry matter production, crop growth rate, leaf area ratio and net assimilation rate from seedling to flagleaf stage. Furthermore, biomass allocation and NPK distribution among abaca organs was significantly affected by high radiation and/or temperature at seedling and early vegetative stages, and differential leaf senescence at flagleaf stage where shade plays a considerable function. The amount of NPK absorbed by each organ was influenced by the growth made during the different stages of crop development. Meanwhile, irrigation and fertilizer application further improved biomass allocation that considerably increased NPK absorption and distribution among plant parts. With regards to agronomic response, the abaca planted under different light regimes showed that 50% shade had significantly higher fiber yield compared to those that were under other light treatments since the plants pseudostem under such treatment were longer, bigger and heavier. The combination of irrigation and fertilization could further enhance fiber yield to as much as 141% (compared to the control) but this was not enough to offset the effects of shade on the physiological performance of the plant which significantly increased fiber yield to as much as 265% (compared to the control). Statistical analysis showed that shade and irrigation-fertilizer application had no significant effect on fiber fineness and tensile strength. The superior productivity of abaca in response to shade was due to the avoidance of photoinhibition and photooxidative damage that negatively affected the abaca grown under full sunlight at seedling and early vegetative stage. Likewise, the detrimental effect of photoinhibition on the photosynthetic capacity of abaca grown in full sunlight significantly decreased biomass production and allocation among abaca organs. The amount of NPK absorbed by each organ was influenced by high radiation causing photooxidative damage at seedling stage and differential leaf senescence at flagleaf stage. This significantly affected the pattern of biomass allocation and NPK distribution among abaca plant organs. On the other hand, the application of fertilizer considerably enhanced biomass production but did not change the usual pattern of biomass and NPK distribution. The results showed that irrigation and fertilizer application cannot offset or equalize the positive effect of shade on the vegetative growth, physiological performance, and NPK absorption among plant organs.Publication Rainforestation farming on Leyte island, Philippines - aspects of soil fertility and carbon sequestration potential(2007) Marohn, Carsten; Sauerborn, JoachimThis study aimed at investigating rainforestation systems in Leyte, Philippines, under different aspects: Characterisation of typical soils in Leyte with respect to physical, chemical and biological parameters relevant for tree growth, possible contributions of rainforestation to restoring soil fertility, performance of a recently planted rainforestation system under different microclimatic and soil conditions, potential of the rainforestation approach for projects under the umbrella of the Clean Development Mechanism (CDM). Soils in Leyte can be grouped into a volcanic and a calcareous category. The latter were formed on coralline limestone and are high in pH and Ca2+ and Mg2+. Contents of organic matter are high while concentrations of plant available PBray are low. Volcanic soils are characterised by low pH and CEC as well as extremely low PBray contents. Organic matter levels are below those of the calcareous soils but still moderate. In any analysed soil, N would not limit tree growth. Pore volume and water infiltration were propitious for all sites, which is relevant in the context of erosion. For calcareous soils, drought and reduced rootability due to clayey subsoil posed the most relevant constraints. The frequently claimed role of rainforestation in the rehabilitation of degraded soils was assessed in a paired plot approach. Chemical and biological soil parameters under 10 year old rainforestation were contrasted with adjacent fallow or Gmelina sp. Clear tendencies across all seven sampled sites were lower available Mg2+ and pH under rainforestation. Other differences were less distinct. Generally, a depletion of soil reserves e.g. in basic cations can be explained by uptake into the plants. A feed-back of these elements to the topsoil via leaf litter, however, could be observed only for available P. In conclusion, plant uptake of single elements can reach orders of magnitudethat reduce soil stocks. At the same time, generally lower pH under rainforestation may have contributed to elevated losses, especially of basic cations. A general improvement of the sampled soils in terms of chemical or biological characteristics through rainforestation could not be observed. To evaluate plant performance six timber and four fruit species, most native, were interplanted on a 1ha plot. Rainforestation, commonly understood as high-density closed canopy system was modified to a less dense 5x5m grid, interplanted with Musa textilis. The plot varied strongly on a small scale due to heterogeneous canopy closure and relief. Methodologically, the entire area was divided into 10 subplots in representative positions to be sampled. Soil physical and chemical properties, microbial activity, PAR and root length density were determined and correlated to plant survival and growth at consecutive inventories. For Musa textilis, the most sensitive species, which was used as an indicator, logistic regressions were calculated to determine the influence of all relevant parameters on survival rates. The most important predictors for survival were organic matter contents, parameters related to biological activity and leaf litter production, which resembled canopy closure and thus indirectly light intensity and soil moisture. To assess growth, multiple regressions were formulated for biomass at five inventories. Corg and NLOM were the most relevant variables determining the regressions used for biomass and growth of abaca. Assessing the potential of rainforestation for Clean Development Mechanism (CDM) measures, amounts of sequestered CO2 during 10 and 20 years, respectively, were estimated under different management options using the WaNuLCAS model. Despite all given uncertainty associated with modelling, one very obvious finding was the dominant role of soil carbon for the plot balance: Appropriate soil management, especially during land preparation (e.g. clearing vs. enrichment planting) is of paramount importance. Looking at the modelled contribution of various tree species to the carbon balance, Musa textilis had a significant influence only during the very first years; later on, the principal share of carbon was bound in the tree component. Here, exotic Gmelina arborea built up biomass more quickly than a rainforestation plot composed of native Shorea contorta and Durio zibethinus, but was then overtaken. In absolute quantities of CO2 sequestration, magnitudes matched inventory and modelled data given in various literature sources for Leyte and the Philippines. Relative to earlier inventory data from two rainforestation sites, modelled values overestimated growth.