Zentrum Ökologischer Landbau Universität Hohenheim (ZÖLUH)
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/82
Browse
Browsing Zentrum Ökologischer Landbau Universität Hohenheim (ZÖLUH) by Subject "Organic agriculture"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate(2021) Weselek, Axel; Bauerle, Andrea; Hartung, Jens; Zikeli, Sabine; Lewandowski, Iris; Högy, PetraAgrivoltaic (AV) systems integrate the production of agricultural crops and electric power on the same land area through the installation of solar panels several meters above the soil surface. It has been demonstrated that AV can increase land productivity and contribute to the expansion of renewable energy production. Its utilization is expected to affect crop production by altering microclimatic conditions but has so far hardly been investigated. The present study aimed to determine for the first time how changes in microclimatic conditions through AV affect selected agricultural crops within an organic crop rotation. For this purpose, an AV research plant was installed near Lake Constance in south-west Germany in 2016. A field experiment was established with four crops (celeriac, winter wheat, potato and grass-clover) cultivated both underneath the AV system and on an adjacent reference site without solar panels. Microclimatic parameters, crop development and harvestable yields were monitored in 2017 and 2018. Overall, an alteration in microclimatic conditions and crop production under AV was confirmed. Photosynthetic active radiation was on average reduced by about 30% under AV. During summertime, soil temperature was decreased under AV in both years. Furthermore, reduced soil moisture and air temperatures as well as an altered rain distribution have been found under AV. In both years, plant height of all crops was increased under AV. In 2017 and 2018, yield ranges of the crops cultivated under AV compared to the reference site were −19 to +3% for winter wheat, −20 to +11% for potato and −8 to −5% for grass-clover. In the hot, dry summer 2018, crop yields of winter wheat and potato were increased by AV by 2.7% and 11%, respectively. These findings show that yield reductions under AV are likely, but under hot and dry weather conditions, growing conditions can become favorable.Publication Lentils can absorb amino acids as a nitrogen source supporting early growth(2025) Kröper, Alex A.; Zikeli, Sabine; Wimmer, Monika A.; Zörb, ChristianBackground: Lentils ( Lens culinaris Medik.) are a valuable crop due to their high nutritional content, low environmental impact, and nitrogen‐fixing ability via rhizobacteria. Early in development, before this symbiosis is established, lentils require external nitrogen, typically supplied through fertilizers or already present in soils. Aim: This study explores whether lentils can utilize amino acids as a nitrogen source and how amino acid supplementation affects growth and nitrate uptake. Results: The findings show that lentils can absorb amino acids from soil, with no adverse effects on growth compared to mineral N fertilizers. The amino acid patterns show only slight changes in individual amino acids. NPF/NRT1, NRT2, AMT2, and DUR3 were expressed in all treatments in root tissue. LHT1 plays a minor role in the distribution of N in the shoots of lentil plants. Conclusion: Although amino acid uptake is less efficient than that of nitrate, it may still benefit young plants in organic farming until rhizobacterial symbiosis is established.