Browsing by Subject "Abundanz"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Abundance and diversity of total and nitrifying prokaryotes as influenced by biochemical quality of organic inputs, mineral nitrogen fertilizer and soil texture in tropical agro-ecosystems(2016) Muema, Esther Kathini; Cadisch, GeorgTropical agro-ecosystems are limited in nutrient resources as a consequence of i) being composed of highly weathered soils, ii) low native soil organic matter (SOM) content due to conversion of natural forests to arable lands and iii) continuous cropping without replenishing soil nutrients. Recovery of SOM by use of organic residues is faced with other competing uses like animal fodder. Moreover, existing SOM is further reduced by increased turnover rates due to favorable climatic conditions in the tropics. Incorporation of residues is therefore a justified means to restore SOM and to provide crop nutrients through microbial mediated activities like nitrification. Nitrification is a central step of the nitrogen (N) cycle, whereby ammonia is converted into nitrite and then to nitrate by bacteria and archaea through production of the amoA gene encoding the alpha-subunit of the enzyme ammonia monooxygenase. In order to better understand the impact of organic residues of contrasting biochemical quality (i.e., high quality Tithonia diversifolia (TD; C/N ratio: 13, lignin: 8.9 %, polyphenols: 1.7 %), intermediate quality Calliandra calothyrsus (CC; 13, 13, 9.4) and low quality Zea mays (ZM; 59, 5.4, 1.2)) on nutrient provision, effects of residue quality on dynamics of relevant decomposer microbial communities were studied. In addition, mineral N fertilizer was used to compensate for mineral N limitations especially in case of low and intermediate quality residues. Since N is one of the most limiting crop nutrients in the tropics, this study therefore focused on ammonia-oxidizing prokaryotes, using DNA-based quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (TRFLP) techniques. In addition, soil physicochemical properties were measured and linked to the dynamics of microbial communities. The study hypothesized that soil type due to differences in structure and nutrient background, as well as seasonality, which influences soil moisture, would shape the response of the studied communities to biochemical quality of residues. Overall, the results of this PhD research revealed specific responses of dynamics of AOB and AOA to quality of organic residues and their combinations with mineral N fertilizer. They also revealed effects of interrelations between quality of residues and soil texture as well as seasonality particularly precipitation on dynamics of microbial communities. Future investigation of active microbial communities with the use of RNA-based approaches need to be considered to further improve our understanding of quality of SOM on soil nutrient dynamics.Publication Untersuchungen zur Abundanz der Reblaus (Dactylosphaera vitifolii Shimer) und zur Nodositätenbildung in Abhängigkeit von Umweltfaktoren(2000) Kopf, Andreas; Blaich, RolfThe aim of the examinations was to investigate the abundance of Phylloxera (Dactylosphaera vitifolii Shimer), the occurrence of different biotypes of Phylloxera, the reaction of rootstocks to the infestation by Phylloxera and the influence of abiotic environmental conditions on the interaction between insect and plant. To investigate this interaction galls on rootlets (nodosities) and leaf galls were examined. The abundance of Phylloxera and the issue of the holocyclical reproduction in the wine region palatinate were evaluated in a field monitoring. In a special field trial the occurrence of different stages of Phylloxera and their damages on the rootstock were registered. With a dual aseptical in vitro system Phylloxera of different origins were examined on their aggressiveness to different varieties of rootstocks. In pot trials the influence of the type of soil and the effect of N-fertilization on the development of nodosities were investigated. The results of the examination show that Phylloxera can be found in nearly every part of the palatinate and that the improper cultivation of grafted rootstocks promotes the spreading of Phylloxera. Through shoots of rootstocks ? as they can be found in vineyards run wild - a holocyclical development of Phylloxera is made possible under appropriate climatical circumstances. Fitness, population dynamics of Phylloxera and the number of nodosities caused by the insects are correlating with their adaptation to a host rootstock. Pot studies have demonstrated that Phylloxera populations develop better in clay soil than sandy soil. High densities of Phylloxera in combination with a lack of N-supply increase a growth depression on grafted roots. It could also be proved that N-fertilization reduces the Phylloxera populations and the development of nodosities up to 98 %.