Browsing by Subject "Agroforestry systems"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Effects of farmland conversion to orchard or agroforestry on soil organic carbon fractions in an arid desert oasis area(2022) Wang, Weixia; Ingwersen, Joachim; Yang, Guang; Wang, Zhenxi; Alimu, AliyaIn southern Xinjiang province, northwest China, farmland is undergoing rapid conversion to orchards or agroforestry. This has improved land-use efficiency but has also caused drastic ecological changes in this region. This study investigated the effects of farmland conversion to orchard or agroforestry on soil total organic carbon (TOC) and several soil labile fractions: readily oxidizable carbon (ROC), light fraction organic carbon (LFOC), and dissolved organic carbon (DOC). Soil samples were collected from seven cropping treatments: a monocultured wheat field (Mono), a 5-year-old jujube orchard (5 J), a 5-year-old jujube/wheat alley cropping system (5 JW), a 10-year-old jujube orchard (10 J), a 10-year-old jujube/wheat alley cropping system (10 JW), a 15-year-old jujube orchard (15 J), and a 15-year-old jujube/wheat alley cropping system (15 JW). The results show that the ROC concentrations varied from 0.17 ± 0.09 g/kg to 2.35 ± 0.05 g/kg across all land-use types and soil depths studied. It was higher in the 0–10 cm and 10–20 cm layers of treatment 10 JW than in other treatments and significantly greater than in the Mono treatment. The highest value of DOC was reached at 593.04 mg/kg in the 15 JW treatment at 0–10 cm. Labile organic carbon decreased with increasing depth in all treatments. The proportion of ROC and LFOC to TOC decreased with increasing soil depth. In all treatments, the ratio of DOC to TOC generally decreased initially and then increased again with increasing depth. Correlation analysis showed that ROC, LFOC, and DOC were closely correlated with TOC (p < 0.01). The ROC, LFOC, and DOC concentrations were significantly correlated with each other (p < 0.01). Following conversion of farmland to jujube orchard or agroforestry, the content and activity of soil organic carbon tended to increase due to augmentation of plant residues. Thus, jujube orchards and agroforestry systems are effective methods to restore soil organic carbon.Publication Payments for environmental services : incentives through carbon sequestration compensation for cocoa-based agroforestry systems in Central Sulawesi, Indonesia(2008) Zeller, Manfred; Seeberg-Elverfeldt, Christina; Schwarze, StefanUp to 25 percent of all anthropogenic greenhouse gas emissions are caused by deforestation, and Indonesia is the third largest greenhouse gas emitter worldwide due to land use change and deforestation. On the island of Sulawesi in the vicinity of the Lore Lindu National Park (LLNP), many smallholders contribute to conversion processes at the forest margin as a result of their agricultural practices. Specifically the area dedicated to cocoa plantations has increased from zero (1979) to nearly 18,000 hectares (2001). Some of these plots have been established inside the 220,000 hectares of the LLNP. An intensification process is observed with a consequent reduction of the shade tree density. This study assesses which impact carbon sequestration payments for forest management systems have on the prevailing land use systems. Additionally, the level of incentives is determined which motivates farmers to desist from further deforestation and land use intensification activities. Household behaviour and resource allocation is analysed with a comparative static linear programming model. As these models prove to be a reliable tool for policy analysis, the output can indicate the adjustments in resource allocation and land use shifts when introducing compensation payments. The data was collected in a household survey in six villages around the LLNP. Four household categories are identified according to their dominant agroforestry systems. These range from low intensity management with a high degree of shading to highly intensified shade free systems. At the plot level, the payments from carbon sequestration are the highest for the full shade cocoa agroforestry system, but with low carbon prices of ? 5 tCO2e-1 these constitute 5 percent of the cocoa gross margin. Focusing on the household level, however, an increase of up to 18 percent of the total gross margin can be realised. Furthermore, for differentiated carbon prices up to ? 32 tCO2e-1 the majority of the households have an incentive to adopt the more sustainable shade intensive agroforestry system. A win-win situation seems to appear, whereby, when targeting only the shade intensive agroforestry systems with carbon payments, the poorest households economically benefit the most and land use systems with high environmental benefits are promoted.