Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Browse by Subject

Browsing by Subject "Artenschutz"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Interactions of farming and plant biodiversity in weed control related ecosystem service provision and weed conservation
    (2020) Schumacher, Matthias; Gerhards, Roland
    There is evidence that diverse plant communities in terrestrial ecosystems are either more stable or more productive in terms of food web support and ecosystem service provision. In agro-ecosystems, characterized by high disturbance and external inputs, plant diversity and their services can only be provided by weeds. In the first study, vegetation recordings and farmer surveys were conducted in on-farm experiments in two regions of Southwestern Germany. The aim was to examine the effects of agricultural management on weed community composition, weed biodiversity and occurrence of rare arable weed species in cereal fields. Weed biodiversity was influenced mainly by crop species, herbicide use and farming system as well as nitrogen and light availability. Weed communities were quite similar in both study regions and dominated by Alopecurus myosuroides, Galium aparine, Viola arvensis, Polygonum convolvulus and Veronica persica. A redundancy analysis revealed that the weed community was mainly shaped by crop species, tillage, location in the field and timing of herbicide application. The results highlight the erosion of weed communities due to intensive agricultural practices and emphasize the conservation of weed biodiversity per se and rare arable weed species in particular. The next aim was to examine if this biodiversity is able to support weed control related ecosystem services, like the predation of weed seeds. The objectives of this study were to investigate the connection between weed biodiversity, Carabid beetle diversity and weed seed predation as well to evaluate the role of farming intensity in this sequence. For this purpose, on-farm experiments were performed on the Eastern Swabian Alb. A positive correlation between weed biodiversity and Carabid beetle diversity was identified as well as a pattern of medium Carabid beetle diversity providing the highest weed seed predation. There was no consistent influence of farming intensity on weed seed predation. The revealed connection between weed diversity, Carabid beetle diversity and weed seed predation highlights the role of plants in food web support and subsequent ecosystem service provision. The utilization of these services depends on the promotion of biodiversity by designing appropriate management strategies. In the next step, the general principles underlying ecosystem service provision by biodiversity, were conveyed to a cover cropping system. The aim was to test single sown cover crops and species mixtures in terms of weed suppression efficacy and reliability. For this purpose, cover crop species were sown singly and as mixtures in a field experiment. Lower weed dry matter and weed densities were found predominantly in treatments with favorable establishment and above-average biomass production. Mixtures performed much more homogeneous in regard to the measured parameters compared to single sown cover crops. The results suggest that, although particular single sown cover crops are more effective to control weeds than mixtures, mixtures are more reliable under changing conditions. Altering the species composition of cover crop mixtures according to more complementary traits might further improve their weed control efficacy. The results of this dissertation demonstrate the importance of plant biodiversity in the provision and reliability of weed control related ecosystem services, either by weeds themselves or by specifically designed cover crop mixtures. Furthermore, management factors influencing weed biodiversity were determined, which can aid in the creation of more sustainable management strategies for a diverse agroecosystem and the conservation of rare arable weed species.
  • Loading...
    Thumbnail Image
    Publication
    Range‐wide population viability analyses reveal high sensitivity to wildflower harvesting in extreme environments
    (2021) Treurnicht, Martina; Schurr, Frank M.; Slingsby, Jasper A.; Esler, Karen J.; Pagel, Jörn
    1. The ecological effects of harvesting from wild populations are often uncertain, especially since the sensitivity of populations to harvesting can vary across species’ geographical ranges. In the Cape Floristic Region (CFR, South Africa) biodiversity hotspot, wildflower harvesting is widespread and economically important, providing an income to many rural communities. However, with very few species studied to date, and without considering range‐wide sensitivity to harvesting, there is limited information available to ensure the sustainability of wildflower harvesting. 2. We studied geographical variation in sensitivity to wildflower harvesting for 26 Proteaceae shrubs with fire‐driven life cycles using population viability analyses. We developed stochastic, density‐dependent population models that were parameterised from individual demographic rates (adult fecundity, seedling recruitment and adult fire survival) and local environmental conditions across the geographical ranges of the study species. We then simulated the effects of harvesting on populations in different environments across species ranges. Our model simulations predicted extinction risk per population, and we derived extinction probabilities over 100 years in response to different harvesting regimes. We used these population‐level extinction probabilities to quantify inter‐ and intraspecific variation in sensitivity to wildflower harvesting, and to explore how geographical variation in sensitivity depends on environmental conditions (climate, soil fertility and fire disturbance). 3. We detected considerable inter‐ and intraspecific variation in sensitivity to wildflower harvesting for the 26 study species. This held for both ‘nonsprouters’ and ‘resprouters’ (species with low and high fire persistence ability, respectively). Intraspecific variation in sensitivity to harvesting showed varying geographical patterns and associated with environmental variation. Notably, sensitivity was high towards range edges and at the climatic extremes of species ranges respectively. 4. Synthesis and applications. We show the importance of combining spatial demographic data, density‐dependent population dynamics and environmental variation when assessing sensitivity to harvesting across species' geographical ranges. Our findings caution against the application of general harvesting guidelines irrespective of species, geographical location or local environmental conditions. Our range‐wide population viability analyses provide insights for developing species‐specific, spatially nuanced guidelines for conservation management. Our approach also identifies species and areas to prioritise for monitoring to prevent the overexploitation of harvested species.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy