Browsing by Subject "Best linear unbiased prediction (BLUP)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Assessing the efficiency and heritability of blocked tree breeding trials(2024) Piepho, Hans-Peter; Williams, Emlyn; Prus, MarynaProgeny trials in tree breeding are often laid out using blocked experimental designs, in which families are randomly assigned to plots and several trees are planted per plot. Such designs are optimized for the assessment of family effects. However, tree breeders are primarily interested in assessing breeding values of individual trees. This paper considers the assessment of heritability at both the family and tree levels. We assess heritability based on pairwise comparisons among individual trees. The approach shows that there is considerable heterogeneity in pairwise heritabilities, primarily due to the differences in both genetic as well as error variances among within- and between-family comparisons. Our results further show that efficient blocking positively affects all types of comparison except those among trees within the same plot.Publication Projecting results of zoned multi-environment trials to new locations using environmental covariates with random coefficient models: accuracy and precision(2021) Buntaran, Harimurti; Forkman, Johannes; Piepho, Hans-PeterMulti-environment trials (MET) are conducted to assess the performance of a set of genotypes in a target population of environments. From a grower’s perspective, MET results must provide high accuracy and precision for predictions of genotype performance in new locations, i.e. the grower’s locations, which hardly ever coincide with the locations at which the trials were conducted. Linear mixed modelling can provide predictions for new locations. Moreover, the precision of the predictions is of primary concern and should be assessed. Besides, the precision can be improved when auxiliary information is available to characterize the targeted locations. Thus, in this study, we demonstrate the benefit of using environmental information (covariates) for predicting genotype performance in some new locations for Swedish winter wheat official trials. Swedish MET locations can be stratified into zones, allowing borrowing information between zones when best linear unbiased prediction (BLUP) is used. To account for correlations between zones, as well as for intercepts and slopes for the regression on covariates, we fitted random coefficient (RC) models. The results showed that the RC model with appropriate covariate scaling and model for covariate terms improved the precision of predictions of genotypic performance for new locations. The prediction accuracy of the RC model was competitive compared to the model without covariates. The RC model reduced the standard errors of predictions for individual genotypes and standard errors of predictions of genotype differences in new locations by 30–38% and 12–40%, respectively.
