Browsing by Subject "Bio-effector"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Bio-effectors for improved growth, nutrient acquisition and disease resistance of crops(2017) Weinmann, Markus; Neumann, GünterRecent scientific approaches to sustain agricultural production in face of a growing world food demand, limited natural resources, and ecological concerns have been focusing on biological processes to support soil fertility and healthy plant growth. In this context, the use of “bio-effectors”, comprising living (micro-) organisms and active natural compounds, has been receiving increasing attention. In contrast to conventional fertilizers and pesticides, the effectiveness of “bio-effectors” is essentially not based on the substantial direct input of mineral plant nutrients, neither in inorganic nor organic forms, nor of a-priori toxic compounds. Their direct or indirect effects on plant performance are rather based on the functional implementation or activation of biological mechanisms, in particular those interfering with soil-plant-microbe interactions. The general objective of the present research work was to improve the empirical and conceptual understanding concerning the utilization of bio-effectors in agricultural practice, following the principles of plant growth stimulation, bio-fertilization and bio-control. One main aspect of investigation was the application of bio-effectors to improve the efficiency of phosphorus (P) acquisition by the plant. Promising bio-preparations based on microbial inoculants (e.g. Bacillus, Pseudomonas, Trichoderma species) as well as natural compounds (e.g. algae extracts, humic acids) were tested in screening assays, greenhouse, and field experiments to characterize their potential effectiveness under varying environmental conditions. The most significant effects on plants appeared under severely low phosphate availability, but even under controlled conditions, bio-effectors required a narrow range of conductive environmental settings to reveal their potential effectiveness. Another focus of research was the application of bio-effectors to control soil borne pathogens, which typically appear in unsound crop rotations. Emphasis was set on take-all disease in wheat induced by the fungus Gaeumannomyces graminis. While the effectiveness of oat precrops to control take-all in subsequent wheat has been attributed to microbial changes and enhanced manganese (Mn) availability in soils, the take-all fungus is known to decrease the availability of Mn by oxidation. Against this background, the effectiveness of oat precrops and alternative crop management strategies to improve the Mn status and suppress the severity of take-all in wheat was investigated under controlled and field conditions. In conclusion, none of the tested supplemental treatments, such the application of microbial bio-effectors, stabilized ammonium or manganese fertilizers, could fully substitute for the multiple effectiveness of oat precrops, which was further confirmed by the results of a field experiment. Finally, some general conclusions and perspectives are summarized. Selected bio-effectors showed a strong capacity to improve the nutrient acquisition and healthy growth of crop plants under controlled conditions, but not in field experiments. However, even under controlled conditions the strongest effects occurred when plants were exposed to abiotic or biotic stresses, such as severely limited P availability or pathogen infestation of the soil substrate, still restricting plant growth to unproductive levels. Facing this situation, there is no perspective to improve the field efficiency of promising bio-effectors applications as a stand-alone approach. The only chance to develop viable alternatives to the conventional use of fertilizers or pesticides, for an ecological intensification of agriculture that maintains high yield levels, seems to be a reasonable integration of bio-effectors into the whole crop management of sound agricultural practice.Publication Bio-effectors for improved growth, nutrient acquisition and disease resistance of crops.- 2nd unrevised edition(2019) Weinmann, Markus; Madora GmbH, Luckestr.1, D-79539 Lörrach; Raupp, Manfred G.Recent scientific approaches to sustain agricultural production in face of a growing world food demand, limited natural resources, and ecological concerns have been focusing on biological processes to support soil fertility and healthy plant growth. In this context, the use of “bio-effectors”, comprising living (micro-) organisms and active natural compounds, has been receiving increasing attention. In contrast to conventional fertilizers and pesticides, the effectiveness of “bio-effectors” is essentially not based on the substantial direct input of mineral plant nutrients, neither in inorganic nor organic forms, nor of a-priori toxic compounds. Their direct or indirect effects on plant performance are rather based on the functional implementation or activation of biological mechanisms, in particular those interfering with soil-plant-microbe interactions. The general objective of the present research work was to improve the empirical and conceptual understanding concerning the utilization of bio-effectors in agricultural practice, following the principles of plant growth stimulation, bio-fertilization and bio-control. One main aspect of investigation was the application of bio-effectors to improve the efficiency of phosphorus (P) acquisition by the plant. Promising bio-preparations based on microbial inoculants (e.g. Bacillus, Pseudomonas, Trichoderma species) as well as natural compounds (e.g. algae extracts, humic acids) were tested in screening assays, greenhouse, and field experiments to characterize their potential effectiveness under varying environmental conditions. The most significant effects on plants appeared under severely low phosphate availability, but even under controlled conditions, bio-effectors required a narrow range of conductive environmental settings to reveal their potential effectiveness. Another focus of research was the application of bio-effectors to control soil borne pathogens, which typically appear in unsound crop rotations. Emphasis was set on take-all disease in wheat induced by the fungus Gaeumannomyces graminis. While the effectiveness of oat precrops to control take-all in subsequent wheat has been attributed to microbial changes and enhanced manganese (Mn) availability in soils, the take-all fungus is known to decrease the availability of Mn by oxidation. Against this background, the effectiveness of oat precrops and alternative crop management strategies to improve the Mn status and suppress the severity of take-all in wheat was investigated under controlled and field conditions. In conclusion, none of the tested supplemental treatments, such the application of microbial bio-effectors, stabilized ammonium or manganese fertilizers, could fully substitute for the multiple effectiveness of oat precrops, which was further confirmed by the results of a field experiment. Finally, some general conclusions and perspectives are summarized. Selected bio-effectors showed a strong capacity to improve the nutrient acquisition and healthy growth of crop plants under controlled conditions, but not in field experiments. However, even under controlled conditions the strongest effects occurred when plants were exposed to abiotic or biotic stresses, such as severely limited P availability or pathogen infestation of the soil substrate, still restricting plant growth to unproductive levels. Facing this situation, there is no perspective to improve the field efficiency of promising bio-effectors applications as a stand-alone approach. The only chance to develop viable alternatives to the conventional use of fertilizers or pesticides, for an ecological intensification of agriculture that maintains high yield levels, seems to be a reasonable integration of bio-effectors into the whole crop management of sound agricultural practice.Publication Bioeffector products for plant growth promotion in agriculture : modes of action and the application in the field(2021) Weber, Nino Frederik; Neumann, GünterModern agriculture faces a conflict between sustainability and the demand for a higher food production. This conflict is exacerbated by climate change and its influence on vegetation, ecology and human society. To reduce land use, the reduction of yield losses and food waste is crucial. Moreover a sustainable intensification is necessary to increase yields, while at the same time input of limited resources such as drinking water or fertilizer should be kept as low as possible. This might be achieved by improving nutrient recycling and plant resistance to abiotic or biotic stress. Bioeffectors (BE) comprise seaweed or plant extracts and microbial inoculums that may stimulate plant growth by phytohormonal changes and increase plant tolerance to abiotic stress (biostimulants), solubilize or mobilize phosphorus from sparingly soluble sources such as Al/Fe or Ca-phosphates in the soil, rock phosphates, recycling fertilizer or organic phosphorus sources like phytate (biofertilizer), or improve plant resistance against pathogens by induced-systemic resistance (ISR) or antibiosis (biocontrol). For this study, in total 18 BE products were tested in germination, pot and field experiments for their potential to improve plant growth, cold stress tolerance, nutrient acquisition and yield in maize and tomato. Additionally, a gene expression analysis in maize was performed using whole transcriptome sequencing (RNA-Seq) after the application of two potential plant growth promoting rhizobacteria (PGPR), the Pseudomonas sp. strain DSMZ 13134 “Proradix” and the Bacillus amyloliquefaciens strain FZB42. Seaweed products supplemented with high amounts of the micronutrients Zn and Mn were effective in reducing detrimental cold stress reactions in maize whereas microbial products and seaweed extracts without micronutrient supplementation failed under the experimental conditions. At optimal temperature the product containing the Pseudomonas sp. strain was repeatedly able to stimulate root and shoot growth of maize plants whereas in tomato only in heat-treated soil substrate significant effects were observed. Results indicate that the efficacy of the product was mainly attributed to stimulation or shifts in the soil microbial community. Additionally, the FZB42 strain was able to stimulate root and plant growth in some experiments whereas the effects were less reproducible and more sensitive to environmental conditions. Fungal BE products were less effective in plant growth stimulation and showed detrimental effects in some experiments. Under the applied experimental conditions BE-derived plant growth stimulation mainly was attributed to biostimulation but aspects of biofertilization or biocontrol cannot be excluded, as all experiments were conducted in non-sterile soil substrates. Root and shoot growth are stimulated in response to hormonal shifts. In the gene expression analysis only weak responses to BE treatments were observed, as previously reported from other studies conducted under non-sterile conditions. Nevertheless, some plant stress responses were observed that resembled in some aspects those reported for phosphorus (P) deficiency in others those reported for ISR/SAR. Especially the activation of plant defence mechanisms, such as the production of secondary metabolites, ethylene production and reception and the expression of several classes of stress-related transcription factors, including JA-responsive JAZ genes, was observed. It also seems probable that in plants growing in PGPR-drenched soils, especially at high application rates, a sink stimulation for assimilates triggers changes in photosynthetic activity and root growth leading to an improved nutrient acquisition. Nevertheless, due to the complexity of interactions in natural soil environments as well as under practice conditions, a designation of a distinct mode of action for plant growth stimulation by microbial BEs is not realistic. A comparison of the overall results with those reported in literature or other working groups in a common research project (“Biofector”) supported the often-reported low reproducibility of plant growth promotion effects by BE products under applied conditions. Factors that influenced BE efficacy were application time and rates, temperature, soil buffer capacity, phosphorus sources and nitrogen fertilization, light conditions and the soil microbial community. Results indicate that in maize cultivation seed treatment is the most economic application technique for microbial products whereas for vegetable or high-value crops with good economic benefit soil drenching is recommended. For seaweed extracts foliar application seems to be the most economic and efficient choice. Furthermore, results emphasize the importance of a balanced natural soil microflora for plant health and yield stability.