Browsing by Subject "Biochemical model"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Microbial regulation of pesticide degradation coupled to carbon turnover in the detritusphere(2015) Pagel, Holger; Streck, ThiloMany soil functions, such as nutrient cycling or pesticide degradation, are controlled by microorganisms. Dynamics of microbial populations and biogeochemical cycling in soil are largely determined by the availability of carbon (C). The detritusphere is a microbial “hot spot” of C turnover. It is characterized by a concentration gradient of C from litter (high) into the adjacent soil (lower). Therefore, this microhabitat is very well suited to investigate the influence of C availability on microbial turnover. My thesis aimed at the improved understanding of biochemical interactions involved in the degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) coupled to C turnover. In the detritusphere gradients of organic matter turnover from litter into the adjacent soil could be identified. Increased C availability, due to the transport of dissolved organic substances from litter into soil, resulted in the boost of microbial biomass and activity as well as in the acceleration of MCPA degradation. Fungi and bacterial MCPA-degraders benefited most from litter-C input. Accelerated MCPA degradation was accompanied by increased incorporation of MCPA-C into soil organic matter. The experimental results show that the transport of dissolved organic substances from litter regulates C availability, microbial activity and finally MCPA degradation in the detritusphere. In general, litter-derived organic compounds provide energy and resources for microorganisms. The following possible regulation mechanisms were identified: i) Litter might directly supply the co-substrate alpha-ketoglutarate (or surrogates) required for enzymatic oxidation of MCPA by bacterial MCPA degraders. Alternatively it might provide additional energy and resources for production and regeneration of the needed co-substrate. ii) Additional litter-C might alleviate substrate limitation of enzyme production by bacteria and bacterial consortia resulting in an increased activity of specific enzymes attacking MCPA. iii) Litter-derived organic substances might stimulate MCPA degradation via fungal co-metabolism by unspecific extracellular enzymes, either directly by inducing enzyme production, or by supplying primary substrates that provide the energy consumed by co-metabolic MCPA transformation. A new biogeochemical model abstracts these regulation mechanisms in such a way that C availability controls physiological activity, growth, death and maintenance of microbial pools. Based on a global sensitivity analysis, 41% (n=33) of all considered parameters and input values were classified as “very important” and “important”. These mainly include biokinetic parameters and initial values. The calibration of the model allowed to validate the implemented regulation mechanisms of accelerated MCPA degradation. The Pareto-analysis showed that the model structure was adequate and the identified parameter values were reasonable to reproduce the observed dynamics of C and MCPA. The model satisfactorily matched observed abundances of gene-markers of total bacteria and specific MCPA degraders. However, it underestimated the steep increase of fungal ITS fragments, most probably because this gene-marker is only inadequately suited as a measure of fungal biomass. The model simulations indicate that soil fungi primarily benefit from low-quality C, whereas bacterial MCPA-degraders preferentially use high-quality C. According to the simulations, MCPA was predominantly transformed via co-metabolism to high-quality C. Subsequently, this C was primarily assimilated by bacterial MCPA-degraders. The highest turnover of litter-derived C occurred by substrate uptake for microbial growth. Input and microbial turnover of litter-C stimulated MCPA degradation mainly in a soil layer at 0-3 mm distance to litter. As a consequence of this, a concentration gradient of MCPA formed, which triggered the diffusive upward transport of MCPA from deeper soil layers into the detritusphere. The results of the three studies suggest: The detritusphere is a biogeochemical hot spot where microbial dynamics control matter cycling. The integrated use of experiments and mathematical modelling gives detailed insight into matter cycling and dynamics of microorganisms in soil. Microbial communities need to be explicitly considered to understand the regulation of soil functions.