Browsing by Subject "Biomass produktion"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Ökonomische Bewertung regionaler Wettbewerbspotentiale verschiedener landwirtschaftlicher Biomassen im Rahmen der Bioökonomie unter besonderer Berücksichtigung Baden-Württembergs(2020) Petig, Eckart; Bahrs, EnnoThe finite nature of fossil resources and climate change pose major challenges to the global society and require a comprehensive transformation of the current economic system. One important aspect of this transformation, also known as bioeconomy, is the transition from a fossil-based to a bio-based supply of raw materials. In this context, agricultural production represents an important supplier of raw materials, which in Germany is already characterized by a strong competition for the scarce land. The scarce land is a major challenge of the expansion of the use of agricultural biomass for the bioeconomy. Accordingly, the derivation of the potential of agricultural biomass for bioeconomy requires consideration of the tradeoffs between various utilization paths. In this context, economic models can be valuable methods, which on one hand are able to depict the trade-offs of different value chains and can, on the other hand, incorporate the uncertainty by developing suitable scenarios. The aim of this thesis is the evaluation of the potential of different agricultural biomasses for the bioeconomy and to analyze the associated effects on agricultural production structures in Baden-Wuerttemberg. In chapter 2 the potential of grassland as a biogas substrate is evaluated, which might be important for the bioeconomy in the future. Due to the more complex harvesting process and partly unfavorable production conditions, grassland has higher production costs compared to arable biogas substrates. The consideration of iLUC Factors with high prices for GHG emissions could improve the competitiveness of grassland to such an extent that it is competitive with the production of biogas substrates on arable land. However, silage maize is often the more favorable biogas substrate in many respects, as chapter 3 shows by means of a site modeling for biogas plants in Baden-Wuerttemberg. In chapter 4 and 5 the potential of straw for energetic and material use is analyzed. These investigations are based on the combination of EFEM with the techno-economic location optimization model BIOLOCATE. The results clearly show the interaction between the economies of scale and the rising raw material supply costs. On the one hand, the average investment costs decrease with increasing plant size, but on the other hand the raw material costs increase, because the transport distances increase and an increasing demand for biomass results also in higher market prices. Additionally, the results show that straw can make a fundamental contribution to the bioeconomy by providing regional bioenergy and as feedstock for material value chains. However, even the use of by-products can have effects on cultivation structures and thus, reduce the production of agricultural biogas substrates, among other things. In Chapter 6 the effects of macroeconomic expansion paths of the bioeconomy on agricultural production structures in Baden-Wuerttemberg are investigated. For this purpose, the results of an iterative model coupling between the agricultural sector model ESIM and the energy sector model TIMES-PanEU of four bioeconomic scenarios are scaled down from national level to regional and farm level using EFEM. The results show different impacts on farm types and thus illustrate the advantages of a differentiated analysis of the expansion of the bioeconomy. Therefore, farms with mainly extensive production methods such as suckler cow husbandry do not profit from the expansion of the bioeconomy due to unfavorable production conditions, while especially large arable farms in fertile regions would benefit disproportional more than the average. Basically, the results reveal limits to the mobilization of additional biomass potential. The reason for this is the already high cultivation intensity of agricultural production in Germany, in which the expansion of one production restricts production of another due to competition for the limited agricultural land. For grassland, the results show that the decline in grassland-based cattle farming and unfavorable economic conditions can lead to a significant increase of unused grassland. Grassland thus presents itself as a promising resource for biomass production for the bioeconomy, as it can provide important ecosystem services (e.g. biodiversity) in addition to the provision of raw materials. However, a political framework has to be established that promotes ecological services accordingly. Finally, in chapter 7 additional research needs are identified, which include further development of the methodological approach. These comprise an extension of the analysis by macroeconomic models to integrate interactions with the material use in a more detailed way. Furthermore, an integration of ecological parameters is necessary for a holistic analysis in the context of bioeconomy.