Browsing by Subject "Biometry"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Improvement of breeding strategies for the trait vase life in cut carnations (Dianthus caryophyllus L.)(2018) Boxriker, Maike; Piepho, Hans-PeterCarnation (Dianthus caryophyllus L.) is one of the ten most famous cut flowers worldwide. A single big flower characterizes standard carnations, while mini car-nations possess multiple flowers per stem. Vase life (VL) is one of the most im-portant breeding objectives in carnations due to the need of long transportation times and direct influence on the costumers. But VL is a complex trait with several effects influencing it. Two-phase traits like VL are traits where the assessment is done in a second phase, in the laboratory and the plants are cultivated in the greenhouse, the first phase. Many experiments have a two-phase character, but little research has been conducted to develop experimental designs in the second phase. To improve breeding efficiency, molecular markers and genomic selection is used in agriculture science but it is so far not common in ornamental breeding. The goal of this thesis was the implementation of SNP-based molecular markers for the trait VL to improve selection of long-lasting, transportable cut carnations. For marker association, 1,500 carnation genotypes were screened for VL behav-ior in an experimental design in both phases. Response to selection was used to assess efficiency. The second-phase experimental design was more important for precise data analyses. This highlights the research need on this topic. Fur-thermore, it was possible to suggest row-column designs for VL trials. Row-column designs are more flexible in the case of positional effects compared with one-dimensional blocking and can be easily analyzed like an α-design. The easiest way to design the following phases are to apply the design one-to-one. The carnation types, mini and standard, showed an influence on VL. The mini carnations last 0.5 d longer than the standard carnations. The same conclusion was drawn based on the molecular data. Transcriptome data was generated with two different sequencing methods. By independent analysis of both carnation types, different results than via the analysis of the whole data set were found. This indicates that the analysis of carnations should be done separately for each carnation type. Association of the phenotypic and genotypic data was so far not possible. As an alternative to molecular markers, genetic correlations for the use as indirect selection for the trait VL and others for breeding relevant traits was calculated. For the first time, bivariate analysis was conducted in two-phase ex-periments. The genotypic correlation between VL and FD was high, but indirect selection would be less effective than direct selection. However, the information can provide an indication of the performance and the effort to measure FD is small. The calculated high heritability of VL and found differences in VL of up to 15 d between the best and worst genotypes showed the potential of improving the population mean by using improved selection strategies like marker-assisted selection or auxiliary traits and the use of statistical methods like experimental designs in all phases of the experiment. The influence of carnation type was shown with this thesis and indicates that the implementation of molecular markers must be done independently for each car-nation type. The importance of experimental designs in multi-phase experiments was highlighted and statistical analysis by mixed models and a bivariate analysis of different traits was performed. Until now, no molecular marker for VL was identified but in a further research project, this will be solved by generating more genotypic data and the construction of a genetic map.Publication Optimizing the prediction of genotypic values accounting for spatial trend andpopulation structure(2010) Müller, Bettina Ulrike; Piepho, Hans-PeterDifferent effects, like the design of the field trial, agricultural practice, competition between neighboured plots, climate as well as the spatial trend, have an influence on the non-genotypic variation of the genotype. This effects influence the prediction of the genotypic value by the non-genotypic variation. The error, which results from the influence of the non-genotypic variation, can be separated from the phenotypic value by field design and statistical models. The integration of different information, like spatial trend or marker, can lead to an improved prediction of genotypic values. The present work consists of four studies from the area of plant breeding and crop science, in which the prediction of the genotypic values was optimized with inclusion of the above mentioned aspects. Goals of the work were: (1) to compare the different spatial models and to find one model, which is applicable as routine in plant breeding analysis, (2) to optimize the analysis of unreplicated trials of plant breeding experiments by improving the allocation of replicated check genotypes, (3) to improve the analysis of intercropping experiments by using spatial models and to detect the neighbour effect between the different cultivars, and (4) to optimize the calculation of the genome-wide error rate in association mapping experiments by using an approach which regards the population structure. Different spatial models and a baseline model, which reflects the randomization of the field trial, were compared in three of the four studies. In one study the models were compared on basis of different efficiency criteria with the goal to find a model, which is applicable as routine in plant breeding experiments. In the second study the different spatial models and the baseline model were compared on unreplicated trials, which are used in the early generation of the plant breeding process. Adjacent to the comparison of the models in this study different designs were compared with the goal to see if a non-systematic allocation of check genotypes is more preferable than a systematic allocation of check genotypes. In the third study these different models were tested for intercropping experiments. In this study it should be tested, if an improvement is expectable for these non randomized or restricted randomized trials by using a spatial analysis. The results of the three studies are that no spatial model could be found, which is preferable over all other spatial models. In a lot of cases the baseline model, which regards only the randomization, but no spatial trend, was better than the spatial models, also for the restricted or non-randomized intercropping trials. In all three studies the basic principle was followed to start first with the baseline model, which is based on the randomization theory, and then to extend it by spatial trend, if the model fit can be improved. In the second study the systematic and non-systematic allocation of check plots in unreplicated trials were compared to solve the question if a non-systematic allocation leads to more efficient estimates of genotypes as the systematic allocation. The non-systematic allocation of check plots led to an unbiased estimation in three of four uniformity trials. As well as in the third study an analysis was done, if the border plots of the different cultivars are influenced by the neighboured cultivar and if there are significant differences to the inner plot. The position of the cultivars, border plot or inner plot, had a significant influence of the yield. If maize was cultivated adjacent to pea, the yield of the border plot of maize was much higher than the inner plot of maize. When wheat was cultivated behind maize, there were no significant differences in the yield, if the plot was a border plot or inner plot. In addition to optimizing the field design for unreplicated trials and the extension of the models by spatial trend the marker information was integrated in a fourth study. An approach was proposed in this study, which calculates the genome wide error for association mapping experiments and accounts for the population structure. Advantages of this approach in contrast to previously published approaches are that the approach on the one hand is not too conservative and on the other hand accounts the population structure. The adherence of the genome wide error rate was tested on three datasets, which were provided by different plant breeding companies. The results of these studies, which were obtained in this thesis, show that by the different extensions, like integration of spatial trend and marker information, and modifications of the field design, an improved prediction of the genotypic values can be achieved.