Browsing by Subject "Blumenkohl"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Evaluation of association mapping and genomic prediction in diverse barley and cauliflower breeding material(2018) Thorwarth, Patrick; Schmid, Karl J.Due to the advent of new sequencing technologies and high-throughput phenotyping an almost unlimited amount of data is available. In combination with statistical methods such as Genome-wide association mapping (GWAM) and Genomic prediction (GP), these information can provide valuable insight into the genetic potential of individuals and support selection and crossing decisions in a breeding program. In this thesis we focused on the evaluation of the aforementioned methods in diverse barley (Hordeum vulgare L.) and cauliflower (Brassica oleracea var. botrytis) populations consisting of elite material and genetic resources. We concentrated on the dissection of the influence of specific parameters such as marker type, statistical models, influence of population structure and kinship, on the performance of GWAM and GP. For parts of this thesis, we additionally used simulated data to support findings based on empirical data. First, we compared four different GWAM methods that either use single-marker or haplotypes for the detection of quantitative trait loci in a barley population. To find out the required population size and marker density to detect QTLs of varying effect size, we performed a simulation study based on parameter estimates of the empirical population. We could demonstrate that already in small populations of about 100 individuals, QTLs with a large effect can be detected and that at least 500 individuals are necessary to detect QTLs with an effect < 10%. Furthermore, we demonstrated an increased power of haplotpye based methods in the detection of very small QTLs. In a second study we used a barley population consisting of 750 individuals as training set to compare different GP models, that are currently used by scientists and plant breeders. From the training set 33 offspring families were derived with a total of 750 individuals. This enabled us to assess the prediction ability not only based on cross-validation but also in a large offspring population with varying degree of relatedness to the training population. We investigated the effects of linkage disequilibrium and linkage phase, population structure and relatedness of individuals, on the prediction ability. We could demonstrate a strong effect of the population structure on the prediction ability and show that about 11,203 evenly spaced SNP markers are necessary to predict even genetically distant populations. This implies that at the current marker density prediction ability is based on the relatedness of the individuals. In a third study we focused on the evaluation of GWAM and GP in cauliflower. We focused on the evaluation of genotyping-by-sequencing and compared the influence of imputation methods on the prediction ability and the number of significant associations. We obtained a total 120,693 SNPs in a random collection of 174 cauliflower genebank accessions. We demonstrated that imputation did not increase prediction ability and that the number of detected QTLs only slightly differed between the imputed and the unimputed data set. GP performed well even in such a diverse gene bank sample, but population structure again influenced the prediction ability. We could demonstrate the usefulness and limitations of Genome-wide association mapping and genomic prediction in two species. Even though a lot of research in the field of statistical genetics has provided valuable insight, the usage of Genomic prediction should still be applied with care and only as a supporting tool for classical breeding methods.