Browsing by Subject "Burkholderia"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Adaptation of model organisms and environmental bacilli to glyphosate gives insight to species-specific peculiarities of the shikimate pathway(2024) Schwedt, Inge; Commichau, Fabian M.Glyphosate (GS), the active ingredient of the popular herbicide Roundup, inhibits the 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase of the shikimate pathway, which is present in archaea, bacteria, Apicomplexa, algae, fungi, and plants. In these organisms, the shikimate pathway is essential for de novo synthesis of aromatic amino acids, folates, quinones and other metabolites. Therefore, the GS-dependent inhibition of the EPSP synthase results in cell death. Previously, it has been observed that isolates of the soil bacteria Burkholderia anthina and Burkholderia cenocepacia are resistant to high amounts of GS. In the framework of this PhD thesis, it could be demonstrated that B. anthina isolates are not intrinsically resistant to GS. However, B. anthina rapidly adapts to the herbicide at the genome level and the characterization of GS-resistant suppressor mutants led to the discovery of a novel GS resistance mechanism. In B. anthina, the acquisition of loss-of-function mutations in the ppsR gene increases GS resistance. The ppsR gene encodes a regulator of the phosphoenolpyruvate (PEP) synthetase PpsA. In the absence of a functional PpsR protein, the bacteria synthesize more PEP, which competes with GS for binding in the active site of the EPSP synthase, increasing GS resistance. The EPSP synthase in B. anthina probably does not allow changes in the amino acid sequence as it is the case in other organisms. Indeed, the Gram-negative model organism Escherichia coli evolves GS resistance by the acquisition of mutations that either reduce the sensitivity of the EPSP synthase or increase the cellular concentration of the enzyme. Unlike E. coli, the EPSP synthase is also critical for the viability of Gram-positive model bacterium Bacillus subtilis. This observation is surprising because the enzyme belongs to the class of GS-insensitive EPSP synthases. In fact, the EPSP synthase is essential for growth of B. subtilis. The determination of the nutritional requirements allowing the growth of B. subtilis and E. coli mutants lacking EPSP synthase activity revealed that the demand for shikimate pathway intermediates is higher in the former organism. This finding explains why laboratory as well as environmental Bacilli exclusively adapt to GS by the mutational inactivation of glutamate transporter genes. Here, it was also shown that a B. subtilis mutant lacking EPSP synthase activity grows in minimal medium only when additional mutations accumulate in genes involved in the regulation of aerobic/anaerobic metabolism and central carbon metabolism. The characterization of these additional mutants will help to elucidate the peculiarities of the shikimate pathway in B. subtilis. Moreover, the mutants could be useful to identify the aromatic amino acid transporters that still await their discovery.