Browsing by Subject "Chemometrics"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Publication Chemometric approach for profiling of metabolites of potential antioxidant activity in Apiaceae species based on LC-PDA-ESI-MS/MS and FT-NIR(2023) Atta, Noha H.; Handoussa, Heba; Klaiber, Iris; Hitzmann, Bernd; Hanafi, Rasha S.Chemometrics is a tool for data mining and unlocking the door for solving big data queries. Apiaceae is a family species which is commonly cultivated worldwide. Although members of this species are widely used as antioxidant, antibacterial, antifungal, and anti-inflammatory agents, their metabolites profiling remains ambiguous. Based on WHO support, chemometrics has been used in evaluating the quality and authenticity of the herbal products. The objective of this study is to profile and characterize phenolic metabolites in nine species from Egyptian cultivars and three different species of German cultivars from the Apiaceae family using multivariate analysis after LC-PDA-ESI-MS/MS and near infrared spectroscopy data are generated. Principal component analysis was successfully applied to distinguish between the nine Egyptian cultivars and the three German cultivars, and hierarchical cluster analysis also confirmed this distinctive clustering. Partial least square regression (PLS-R) models showed a relationship between phytochemicals and antioxidant activities. The metabolites responsible for the clustering pattern and variables important for projection (VIP) were identified, being twelve amongst nine Egyptian cultivar samples and thirteen amongst the Egyptian cultivar and the German cultivar comparison. The identified VIPs were also correlated with the antioxidant activity using PLS-R. In conclusion, the study showed novelty in the application of hyphenated analytical techniques and chemometrics that assist in quality control of herbal medicine.Publication Fluorescence spectroscopy and chemometricsan innovative approach for characterization of wheat flour and dough preparation
(2016) Ahmad, Muhammad Haseeb; Hitzmann, BerndImplementation of process analytical technologies (PAT) in food applications has attained a remarkable motivation due to higher quality and safety standards in this field. PAT applications also include rapid and non-invasive approaches which can be obtained from spectroscopic techniques. Fluorescence spectroscopy together with chemometrics is considered to be an outstanding analytical tool for fast and non-invasive technique for food analysis which can be used in various food applications on industrial scale. It is known for its sensitivity and specificity which can analyze the different foods and its ingredients while chemometrics helps to extract the useful information from the spectral data. The different chemometrics tools used for quantitative and qualitative analysis of spectral data, has increased the importance of this spectroscopic technique in generating the new ideas and hypothesis to develop new analytical methods which lead towards betterment in industrial operations for process and quality monitoring. In this doctoral project, fluorescence spectroscopic together with chemometric has been utilized to develop some new methods for determination of different parameters of wheat which provides the central idea of the thesis. First manuscript presents the potential of fluorescence spectroscopy to predict the analytical, rheological and baking parameters of different wheat flours by just taking the spectral signature without any sample preparation. Twelve different wheat flours milled from wheat cultivars were used to analyze the analytical, rheological and baking parameters using the conventional methods. These measured parameters were predicted from the spectral data taken for different wheat flours using genetic algorithm coupled with partial least square regression. The model obtained for protein, wet gluten and sedimentation value showing high R2 = 0.90, 0.92 and 0.81 respectively. Similarly, the rheological parameters like dough development time and water absorption were also predicted with low root mean square error of cross validation (RMSECV) and high R2 = 0.95 and 0.77 respectively while pasting temperature showed R2 = 0.78. Furthermore, moisture and volume of bread were predicted with high accuracy showing R2 = 0.86 and 0.95 respectively in the baking parameters. Other rheological and baking parameters like dough stability, softening, farinograph quality number, baking loss, crumb hardness and springiness were not predicted well due to poor correlation and high error. In the second paper, characterization of complex farinographic kneading process is performed by using the fluorescence spectroscopy in combination with chemometric tools. The aim of this investigation is to determine the impact of hydration of flour onto the spectral signals, classification of farinographic curve and separation of wheat flours based on their bread making performance. Secondly the middle curve of farinograph was predicted out of the fluorescence spectra using partial least square regression (PLSR) which can help to predict optimal dough development time. The spectra of the flour showed high intensities in protein, NADH and riboflavin regions which reduce to 36 %, 58 % and 61 % respectively after the hydration process depicting its influence due to structural changes in protein and oxidation of NADH. The farinographic curve was divided into four phases and principal component analysis (PCA) has been used to extract the qualitative information regarding the farinographic curve from the fluorescence spectra to categorize all farinographic phases into hydration, dough development, and stability and softening. Similarly, different pre-processing tools like standard normal variate and generalized least square weighting generate good separation of various wheat flours during the farinographic kneading process into different quality groups (E, A, B and C) on the basis of their bread baking performance from the spectral data using PCA. Additionally, PLSR was applied to predict the middle curve of farinograph out of spectral data showing a descent coefficient of determination R2 = 0.75 with RMSECV of 14 Brabender units. However, more research can lead towards the development of a sensor for determination of optimal dough development time. In another study, the nutritional parameters of 26 different types of wheat flour obtained from different vendors from the supermarket were predicted using fluorescence coupled with linear and non-linear chemometric tools. PCA applied on the spectral data for different types of the wheat flours showing a clear separation. On the other hand, PLSR was used to quantify the nutritional parameters of different types of wheat flours showing a good prediction for fat, moisture and carbohydrates using cross-validation, with a R2 of 0.88, 0.86 and 0.89, respectively whereas the protein, sucrose and salt contents presented a little correlation in PLSR. Therefore, locally weighted regression, a non-linear chemometric tool improves the prediction ability of all of the nutritional parameters by decreasing the error with an increasing R2. The energetic value, protein, fat, carbohydrate, moisture, sucrose, salt and saturated fatty acid contents showed R2 of 0.96, 0.93, 0.99, 0.99, 0.98, 0.88, 0.95, and 0.99 respectively, for different wheat flours. The aforementioned results clearly demonstrate the potential of the fluorescence spectroscopy in determination of analytical, rheological, baking and nutritional parameters of the wheat flours. They present that it can be used to characterize and categorize the farinographic kneading process, which is important in the bread-baking industry. More research in this direction can result in developing a sensor for predicting the quality parameters and processing operations in the cereal based industries rapidly and non-invasively which are important for regulatory and screening of the wheat on quality characteristics for marketing and end product evaluations.Publication Fluorescence spectroscopy of flour fractions and dough: analysis of spectral differences and potential to improve wheat quality prediction(2025) Ziegler, Denise; Buck, Lukas; Scherf, Katharina Anne; Popper, Lutz; Hitzmann, Bernd; Ziegler, Denise; Department of Process Analytics, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Buck, Lukas; Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Scherf, Katharina Anne; Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Popper, Lutz; Mühlenchemie GmbH & Co. KG, Ahrensburg, Germany; Hitzmann, Bernd; Department of Process Analytics, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, GermanyBackground and Objectives: Spectroscopy of wheat kernels and flour has been used as a rapid tool to assess wheat quality, but predictions still lack in accuracy for most quality parameters except for protein content. To enable an improved prediction of further quality characteristics, new approaches are needed. This study investigates if the preprocessing of flour into flour fractions (by air classification, sieving) or dough and subsequent spectroscopic analysis of these types of samples could be a new way to improve wheat quality predictions. For this purpose, spectral differences are investigated and predictions of farinograph parameters are compared for fluorescence spectra of flour, flour fractions, and dough. Findings: A wide variety of fluorophores present in cereal products was identified. Their peak intensities significantly differed for flour, flour fractions, and dough. Flour and sieve fractions were superior in predicting water absorption (R2CV flour = 0.79; R2CV 32–50 µm = 0.81), while gluten and dough samples strongly improved predictions of rheological properties, especially dough development time (R2CV flour = 0.64; R2CV dough = 0.90; R2CV gluten = 0.84). Conclusion: Preprocessing of flour samples greatly alters their composition (e.g., protein enrichment), which is also reflected by spectral differences. Spectra of different sample types therefore contain different information and have the potential to improve the prediction of wheat quality. Significance and Novelty: This is the first study that investigates spectral differences of a large number of different flour fractions and dough using fluorescence spectroscopy and subsequently underlines the potential of this novel approach to improve wheat quality prediction in the future.Publication Generic chemometric models for metabolite concentration prediction based on Raman spectra(2022) Yousefi-Darani, Abdolrahim; Paquet-Durand, Olivier; von Wrochem, Almut; Classen, Jens; Tränkle, Jens; Mertens, Mario; Snelders, Jeroen; Chotteau, Veronique; Mäkinen, Meeri; Handl, Alina; Kadisch, Marvin; Lang, Dietmar; Dumas, Patrick; Hitzmann, BerndChemometric models for on-line process monitoring have become well established in pharmaceutical bioprocesses. The main drawback is the required calibration effort and the inflexibility regarding system or process changes. So, a recalibration is necessary whenever the process or the setup changes even slightly. With a large and diverse Raman dataset, however, it was possible to generate generic partial least squares regression models to reliably predict the concentrations of important metabolic compounds, such as glucose-, lactate-, and glutamine-indifferent CHO cell cultivations. The data for calibration were collected from various cell cultures from different sites in different companies using different Raman spectrophotometers. In testing, the developed “generic” models were capable of predicting the concentrations of said compounds from a dilution series in FMX-8 mod medium, as well as from an independent CHO cell culture. These spectra were taken with a completely different setup and with different Raman spectrometers, demonstrating the model flexibility. The prediction errors for the tests were mostly in an acceptable range (<10% relative error). This demonstrates that, under the right circumstances and by choosing the calibration data carefully, it is possible to create generic and reliable chemometric models that are transferrable from one process to another without recalibration.Publication Improved prediction of wheat baking quality by three novel approaches involving spectroscopic, rheological and analytical measurements and an optimized baking test(2025) Ziegler, Denise; Buck, Lukas; Scherf, Katharina Anne; Popper, Lutz; Schaum, Alexander; Hitzmann, Bernd; Ziegler, Denise; Department of Process Analytics, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Buck, Lukas; Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Scherf, Katharina Anne; Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Popper, Lutz; Mühlenchemie GmbH & Co. KG, Ahrensburg, Germany; Schaum, Alexander; Department of Process Analytics, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Hitzmann, Bernd; Department of Process Analytics, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, GermanyBaking quality, defined as loaf volume, is one of the most important quality attributes of wheat. An accurate and rapid determination is of great interest for the wheat supply chain. However, this remains difficult to date, because reported predictions based on other wheat characteristics (e.g. protein content) or flour spectroscopy are poor. This study investigates three novel approaches to improve the prediction of specific loaf volume determined by an optimized mini-baking test. The predictions are based on a large variety of rheological and analytical data as well as fluorescence, near-infrared (NIR) and Raman spectroscopy of flour and flour fractions. Furthermore, the influence of data fusion on the predictions is investigated. All three approaches presented promising results and showed great potential for practical application with R2CV > 0.90 for various regression models. For example, the combination of farinograph data with solvent retention capacity data or NIR flour spectra yielded R2CV of 0.91 in both cases. Combining Raman spectra of the < 32 μm and 75–100 μm fractions as well as NIR spectra of gluten, flour and starch both also yielded R2CV of 0.91. The results underline that loaf volume is a complex quality characteristic that can be better predicted when different data types are combined. Different rheological and analytical tests and different spectroscopic methods capture specific wheat quality characteristics that have different relations to baking volume and can therefore provide complementary information for improved predictions. Furthermore, the importance of rheological tests (especially farinograph, extensograph, alveograph) and the baking procedure for the prediction of baking quality are emphasized.Publication The potential of spectroscopic techniques in coffee analysis - a review(2021) Munyendo, Leah; Njoroge, Daniel; Hitzmann, BerndThis review provides an overview of recent studies on the potential of spectroscopy techniques (mid-infrared, near infrared, Raman, and fluorescence spectroscopy) used in coffee analysis. It specifically covers their applications in coffee roasting supervision, adulterants and defective beans detection, prediction of specialty coffee quality and coffees’ sensory attributes, discrimination of coffee based on variety, species, and geographical origin, and prediction of coffees chemical composition. These are important aspects that significantly affect the overall quality of coffee and consequently its market price and finally quality of the brew. From the reviewed literature, spectroscopic methods could be used to evaluate coffee for different parameters along the production process as evidenced by reported robust prediction models. Nevertheless, some techniques have received little attention including Raman and fluorescence spectroscopy, which should be further studied considering their great potential in providing important information. There is more focus on the use of near infrared spectroscopy; however, few multivariate analysis techniques have been explored. With the growing demand for fast, robust, and accurate analytical methods for coffee quality assessment and its authentication, there are other areas to be studied and the field of coffee spectroscopy provides a vast opportunity for scientific investigation.