Browsing by Subject "Crop protection"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Entwicklung innovativer Pflanzenschutzprodukte und -verfahren als umweltfreundliche Alternativen zur Bekämpfung von Mehltaupilzen : Bericht im Rahmen des Forschungsprojektes: „Silizium als Aktivator bei Kulturpflanzen“(2019) Raupp, Manfred G.; Weinmann, Markus; Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e. V. (AiF) Projekt GmbH, Berlin; Madora GmbH, Lörrach; Römheld, Volker; Neumann, Günter; Blaich, Rolf; Merkt, NikolausPowdery mildews are among the most important diseases in many crop plants. In all sectors of crop production (agriculture, viticulture, horticulture and orchards) powdery mildew fungi can cause severe damage under field as well as greenhouse conditions. Although organic synthetic fungicides have been used to combat powdery mildews in conventional and integrated agriculture for decades, organic farming lacks effective alternatives to the ecologically questionable sulfur fungicides. Yet, also for integrated or conventional crop production, alternatives or supplements for a reduction and more effective use of synthetic fungicides would be desirable to optimize the production of high quality food with the help of environmentally friendly means. Objective of the present work was the development of innovative crop protection products and application strategies to combat powdery mildew fungi with respect to the knowledge on resistance-enhancing effects of an improved silicon (Si), manganese (Mn) and zinc (Zn) supply to the plants. Furthermore, various plant extracts have recently received renewed attention. Among other active natural agents, garlic (Allium sativum L.) is known for its fungitoxic effect and at the same time high Mn and Zn contents. With the present work, an overview of possible approaches to control powdery mildew in grapevine by use of Si, Mn, Zn and plant extracts from garlic has been elaborated in greenhouse experiments. In this regard, the physiological significance of Si, Mn and Zn for the expression and strengthening of plant own resistance mechanisms was distinguished from the effectiveness of spray applications for forming passive silicate crusts as mechanical infection barriers. The physiological Si status of the plants could be clearly improved only by soil rather than foliar application of silicates. Regarding the soil application of silicates, however, no practical applications are known, how silicon fertilizers can be distributed under field conditions in the soil and brought into the rhizosphere to continuously ensure high rates of Si uptake. There is also still considerable uncertainty whether the soil application of silicates in non-Si accumulators, such as grapevines, can result in sufficient Si uptake for an effective expression of resistance mechanisms. The most impressive effects in the control of powdery mildew were achieved with the spray application of potassium silicate in combination with wetting agents to form silicate crusts on the leaf surface. The positive influence of Mn and Zn on the effectiveness of spray applications of potassium silicate and the adequate compatibility of Mn and Zn chelates with potassium silicate suggest that the interactions between Si, Mn and Zn should be considered for further product development. The application of garlic extract did not result in sufficient efficiency, although protective and curative properties could be observed. Allicin, supposed to be the active ingredient of garlic extract, has a broad spectrum of antimicrobial activity and is one of the few agents for which no development of resistance has been found in microorganisms so far. Therefore, the interest in this agent for the development of biological plant protection products is expected to increase.Publication Further limitations of synthetic fungicide use and expansion of organic agriculture in Europe will increase the environmental and health risks of chemical crop protection caused by copper‐containing fungicides(2023) Burandt, Quentin C.; Deising, Holger B.; Tiedemann, Andreas vonCopper-containing fungicides have been used in agriculture since 1885. The divalent copper ion is a nonbiodegradable multisite inhibitor that has a strictly protective, nonsystemic effect on plants. Copper-containing plant protection products currently approved in Germany contain copper oxychloride, copper hydroxide, and tribasic copper sulfate. Copper is primarily used to control oomycete pathogens in grapevine, hop, potato, and fungal diseases in fruit production. In the environment, copper is highly persistent and toxic to nontarget organisms. The latter applies for terrestric and aquatic organisms such as earthworms, insects, birds, fish, Daphnia, and algae. Hence, copper fungicides are currently classified in the European Union as candidates for substitution. Pertinently, copper also exhibits significant mammalian toxicity (median lethal dose oral = 300–2500 mg/kg body wt in rats). To date, organic production still profoundly relies on the use of copper fungicides. Attempts to reduce doses of copper applications and the search for copper substitutes have not been successful. Copper compounds compared with modern synthetic fungicides with similar areas of use display significantly higher risks for honey bees (3- to 20-fold), beneficial insects (6- to 2000-fold), birds (2- to 13-fold), and mammals (up to 17-fold). These data contradict current views that crop protection in organic farming is associated with lower environmental or health risks. Further limitations in the range and use of modern single-site fungicides may force conventional production to fill the gaps with copper fungicides to counteract fungicide resistance. In contrast to the European Union Green Deal goals, the intended expansion of organic farming in Europe would further enhance the use of copper fungicides and hence increase the overall risks of chemical crop protection in Europe. Environ Toxicol Chem 2024;43:19–30. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.