Browsing by Subject "Crop rotation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Integrating perennial biomass crops into crop rotations: How to remove miscanthus and switchgrass without glyphosate(2023) Lewin, Eva; Kiesel, Andreas; Magenau, Elena; Lewandowski, IrisPerennial energy grasses have gained attention in recent years as a promising resource for the bioeconomy because of their benign environmental profile, high stress tolerance, high biomass yields and low input requirements. Currently, strong breeding efforts are being made to extend the range of commercially available miscanthus and switchgrass genotypes. In order to foster farmers' acceptance of these crops, and especially of novel hybrids, more information is required about how they can be efficiently integrated into cropping rotations, how they can be removed at the end of their productive lifespan, and what effect they have on subsequently grown crops. Farmers in Europe are meanwhile increasingly constrained in the methods available to them to remove these crops, and there is a risk that the herbicide glyphosate, which has been used in many studies to remove them, will be banned in coming years. This study looks at the removal of seven‐year‐old stands of miscanthus and switchgrass over 1 year at an experimental site in Southern‐Germany. Three novel miscanthus genotypes were studied, alongside one variety of switchgrass, and the impact of each crop's removal on the yield of maize grown as a follow‐on crop was examined. A combination of soil tillage and grass herbicides for maize cultivation was successful in controlling miscanthus regrowth, such that yields of maize grown after miscanthus did not differ significantly from yields of maize grown in monoculture rotation (18.1 t dry biomass ha−1). Yields of maize grown after switchgrass (14.4 t dry biomass ha−1) were significantly lower than maize in monoculture rotation caused by insufficient control of switchgrass regrowth by the applied maize herbicide. Although some regrowth of miscanthus and switchgrass was observed in the follow‐on crop maize, complete eradication of both crops was achieved by subsequent winter wheat cultivation.Publication Turbulent exchange of energy, water and carbon between crop canopies and the atmosphere : an evaluation of multi-year, multi-site eddy covariance data(2019) Eshonkulov, Ravshan; Streck, ThiloThe increase of anthropogenic CO2 emissions and other greenhouse gases has raised concern about climate change. Climate change has manifold impacts on yield and yield quality, crop rotations, carbon and nitrogen cycling, water regime and agricultural production systems. To understand its consequences on environmental systems, measuring the matter and energy exchange at the land surface provides data to help validate and inform a wide range of process models. Such flux measurements at the land-surface provide an opportunity to test simulations of processes in the soil-plant-atmosphere continuum. Currently, such measurements are mainly based on the eddy covariance (EC) method, for the quality of which the energy balance closure (EBC) is a problem. The EBC significantly influences the calibration and validity of land-surface models, especially in regard to the energy and water balance at the Earth’s surface. The EBC quantifies the deviation between turbulent fluxes and available energy. It is crucial to obtain high-quality EC measurements to determine the reasons for the EBC. The research aims of this dissertation were: 1) to clarify the role of minor storage and flux terms in the energy balance, 2) to determine the possible reasons for the energy imbalance using a long-term dataset (2010-2017) from agricultural croplands, and 3) to investigate the effects of region, site, year and crop type on carbon fluxes and budgets. In the first study (Chapter 2) the contribution of minor storage terms to the EBC were investigated. I also determined the contribution of ground heat fluxes calculated by different methods. A harmonic analysis method was used to calculate ground heat fluxes from measurements of heat flux plates and soil temperature sensors. Soil heat storage and enthalpy change in the plant canopy were determined at different locations within the EC footprint. Considering minor storage terms improved the energy balance closure on average by 5.0 % in 2015 and by 6.8 % in 2016. The greatest energy balance closure improvement occurred in May of both study years. The dominant fraction of minor energy storage was energy uptake and release through photosynthesis and respiration. Additionally, the energy fluxes related to soil temperature change were also observed. The ground heat flux calculated by harmonic analysis from soil heat flux plates narrowed the EBC by 3 % compared to the calorimetric method. The results indicated that the typical correction approach to achieve energy balance closure, i.e. the Bowen-ratio method, overestimated the turbulent fluxes. The second study (Chapter 3) investigated the effects of crop type, site characteristics, wind directions, atmospheric conditions and footprint on the EBC. The long-term evaluation of EC measurements showed that, with the EC method, 25 % of the available energy could not be detected. Decreasing the flux footprint area increases the chance of a more homogeneous area. Homogeneity plays an important role in achieving a better energy balance closure. The synthesis of long-term EC data indicated that the sonic anemometer is very sensitive to orientation, not allowing accurate measurements from all wind directions. Discarding the measurements from wind directions 0° and 90° at EC4 improved the EBC from 80 to 84 %. In the third study, presented in Chapter 4, a long-term and multi-site experiment was evaluated to clarify the effects of site, year and region on the CO2 fluxes and budgets in agroecosystems. The net ecosystem exchange of CO2 fluxes – measured on six sites during eight years – was comprehensively examined. Winter rapeseed had the lowest CO2 uptake, cropping of silage maize resulted in the highest C losses. The management of harvest residues was the most effective means of controlling the C budgets. Comparing the CO2 fluxes processed with the recently developed ogive optimization method versus the conventional calculation showed that eliminating low-frequency contributions had a considerable effect. On average, the ogive optimization method delivered 6.9 % higher net ecosystem exchange rates than the conventional method. This dissertation provides new insights into how to obtain better measurements of matter and energy fluxes from EC measurements by a) considering storage terms otherwise neglected, b) using harmonic analysis for calculating ground heat fluxes, c) discarding fluxes from behind the anemometer and d) applying the ogive optimization method.