Browsing by Subject "DSSAT"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Designing, modeling, and evaluation of improved cropping strategies and multi-level interactions in intercropping systems in the North China Plain(2010) Knörzer, Heike; Claupein, WilhelmAdjusting cropping systems in order to increase their efficiency is a global issue. High yield and sustainability are the catchphrases of production in the 21st century, and agricultural production has to solve the balancing act between ecology and economy. Therefore, the requests for farmers, consultants and researchers are rising, and production modes are changing. Nevertheless, solutions have to be detected spatially explicit and locally adapted and accepted in order to be implemented successfully. Taking the North China Plain as an example, the productivity of arable land needs to be further increased by applying strategies to reduce or avoid negative environmental effects. Further yield increases are not possible by increasing input factors like N-fertilizer or irrigation water as N-fertilizer rates are extremely high and irrigation water is limited. However, yield increases might be possible by developing improved cropping strategies operated by cropping designs. Taking modeling and simulation tools into account back up the acceleration of research attainments and the understanding of cropping systems. The present thesis embraces the designing and modeling of such a potential cropping system, to wit strip intercropping. Thus, the main goals of the study were to analyze, design, evaluate, and in the end model intercropping. Intercropping systems are complex systems which strongly need to be designed and evaluated carefully in order to fulfill the premises of ecological and economical efficiency as well as sustainability. Multi-level interactions have to be weighted and taken into regard for evaluating datasets applicative for modeling and simulating intercropping. The main results of the study indicated, that traditional cropping systems like intercropping are widespread in China, where approximately one third of arable land is under intercropping. Reviewing cereal intercropping systems in China, the four agro-ecological regions ?Northeast and North?, the ?Northwest?, the ?Yellow-Huai River Valley? and the ?Southwest? could be classified, distinguished and described. Intercropping offers a great variation of species combination, benefits as well as challenges for cropping systems design and farmers. Carefully balanced between facilitation and competition, intercropping bears the potential of increased yield and yield stability, income security, resource use efficiency and biodiversity. Intercropping gives evidence about traditional cropping systems with the potential for future production systems under the paradigm of sustainability. Further, results from conducted field experiments indicated that border effects are the key component of intercropping performance. Nevertheless, analyzing strip intercropping statistically has peculiarities as they lack in randomization because the cropping system imposes alternating strips. Thus, spatial variability and its effect on yield were regarded differently within a geo-statistical analysis. In addition to the geo-statistical analysis, the crop growth modeling approach paid tribute to monocropping effects as well as to field border effects occurring in strip intercropping systems. Further on a model-based approach was tested to quantify multi-level interactions with special regard to changing microclimatic conditions and to optimize intercropping systems from an agronomical point of view. In comparison to other interspecific competition modeling approaches, a shading algorithm was evaluated and implemented into the process-oriented crop growth model DSSAT in order to simulate competition for solar radiation. More common in modeling mixed intercropping, a modified Beer?s law subroutine has been used instead, e.g. in APSIM. APSIM and DSSAT were compared by modeling the conducted field trials. As a result, the Beer?s law approach was not capable to model strip intercropping. In contrast, the modeling with a changed DSSAT model showed that applying a simple shading algorithm that estimated the proportion of shading in comparison to the monocropping situation and in dependency from neighboring plant height seems to be a promising approach. The results indicated that competition for solar radiation in those systems is a driving force for crop productivity but neither the most dominant nor the one and only. Resource distribution and allocation in space and time seems to be more important than the total amount of resources. Those effects have to be taken into account when simulating interspecific competition.Publication Reducing irrigation water supply to accomplish the goal of designing sustainable cropping systems in the North China plain(2007) Binder, Jochen; Claupein, WilhelmAn International Research Training Group (IRTG) of the University of Hohenheim and the China Agricultural University, entitled ?Modeling Material Flows and Production Systems for Sustainable Resource Use in the North China Plain? was launched in 2004. The major hypothesis was ?that adjustments in cropping systems and management practices provided potential for sustainable resource protection on a high yield level?. The research program was conducted in one of the most important economic and agricultural regions in China, the North China Plain (NCP). The NCP is one of the major maize (Zea mays L.) and wheat (Triticum aestivum L.) growing areas. A literature review indicated that over the last two decades yields for wheat and maize increased by more than 20%, which had mainly been achieved by augmenting the amount of irrigation water and fertilizer. Besides the positive effects on yield an increasing amount of these input factors leads to many environmental problems. Field experiments were carried out to compare different cropping systems. Currently, the double cropping of winter wheat and summer maize is the common cultivation system in the NCP. It consists of growing two crops mostly winter wheat and summer maize in one year. The winter wheat production depends on a supplemental irrigation, because rainfall is concentrated in the summer months during the maize growing season. An alternative to the intensive double cropping system could be the single cultivation of spring maize. Relative less irrigation water is required for spring maize production, because the rainy season coincides with the main part of the maize growing season. Due to the longer growing season spring maize normally realises higher yields in comparison to summer maize. However, the total yield of a double copping system of wheat and maize is higher. The evaluated system three harvests in two years (winter wheat and summer maize in the first year followed by spring maize in the second year) forms a balance between the double cropping system and the single cropping of spring maize. Due to the fact that three crops are grown in two years total yield is higher in comparison to single cropping of spring maize (two harvests in two years) but lower in comparison to the traditional double cropping system (four harvests in two years). However the lower cropping index in contrast to the double cropping of wheat and maize results in a lower demand of the input factors irrigation water and N-fertilizer whereas in comparison to the single cropping of spring maize a higher amount of input factor is required. Besides the conduction of field experiments for the collection of empirical datasets, the CERES-Maize and CERES-Wheat models were used to quantify the effects of different irrigation management practices on crop growth, productivity and sustainability of agricultural production. Results indicated that there is a considerable potential for reducing the irrigation amount for winter wheat. However, the results also showed that a supplemental irrigation at critical growth stages seems to be essential to maintain high yields and to ensure an adequate gross margin. In a more complex approach the CERES-Maize model was used to simulate the yield of summer maize and spring maize across the NCP. The spatial and temporal climate variability was taken into account by using up to 30 years of weather data from 14 meteorological stations. The simulated results were linked to a Geographic Information System (GIS). Results indicated that the yield distinction between summer maize and spring maize was partially very low as a result of water shortage at flowering stage. A delay in sowing and the use of adapted cultivars with a later flowering date could help to increase spring maize yields. Summarizing, the results of this study indicate that water is one of the most limiting factors for crop production in the NCP. Further, the reduction of total water consumption will become more and more important with water becoming increasingly scarce and thus costly. Consequently agriculture has to undergo and is already undergoing dramatic changes. The results of this study indicated that there are several possibilities optimize cropping systems in the NCP, focussing on a more sustainable use of water while maintaining high yields. In this context, crop models are valuable tools for e.g. irrigation planning or evaluating different cropping designs in the NCP.