Browsing by Subject "Darm"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Der Glucocorticoidrezeptor des Schweins: Herstellung und Charakterisierung eines polyklonalen Antiserums, sowie Studien zur Verteilung des GCR im Intestinaltrakt von Ebern und Kastraten(2002) Gutscher, Monika; Claus, RolfGlucocorticoids are well known to be essential for many physiological and developmental processes. Such functions include their effects on carbohydrate and protein metabolism and their regulatory influences on the immune system. In cell regulation they play a dose-dependent key role for differentiation and apoptosis. In rapidly renewing tissues the stringent control of these mechanisms is central to the maintenance of tissue homeostasis. ln the gastrointestinal tract both the adaption to changing nutrients and the presentation with a vast array of different types of antigens, including potential pathogens and harmless dietary antigens requires a granular regulation of cell proliferation, differentiation and cell death. In the pig, the differences in the turn-over rate for instance between skeletal muscle and the gut tissue could be attributed to different GCR concentrations respectively. This explains the tissue specific sensitivty on circulating corticoids. Thus studies on GCR distribution contributes to the clarification of the role of glucocorticoids in the regulation of these mechanisms in the intestinal tract. In the pig, so far receptor detection has been performed by radio ligand binding assays, which only measures steroid unoccupied non-activated receptors in the cytoplasm. Selective GCR antibodies react with both occupied and unoccupied GCR. In addition, antibodies enable celltype specific detection of the GCR in complex tissues by immunocytochemistry. The aim of this investigation was the production of porcine GCR-specific polyclonal antibodies by detailed analysis of the cDNA sequence of the GCR and the recombinant expression of a suitable antigen fragment. A fragment with 2.1 kb of the GCR cDNA (gcr2.1) was sequenced. Based on Blast sequence analysis a GCR antigen fragment for recombinant expression was selected from the modulatory region (GCRmr) and cloned in a T7-expression system as a His-tag fusion protein. After affinity chromatographic und preparative purification The anti-pGCR-antibodies bind the pGCRmr antigen with high affinity, as well as the denatured receptor in western blot analysis. In additon, immunoprecipitation assays demonstrated that cytosolic GCR is recognized regardless of whether it is unoccuppied or occuppied with dexamethasone. Thus, the antiserum is able to bind the native GCR both in its inactivated form as a multiprotein complex in association with HSP90 and in its activated form with shed HSP 90. Our investigations with immunoprecipitation assays support the applicability of the anti-pGCR antiserum in immunohistochemistry. The characterized antibodies were implemented in immunohistochemy for studies of distribution and localization of the GCR in the small bowl and colon of boars and barrows. The intracellular distribution of the GCR was examined by western blot assays. Immunohistochemical studies showed an increased number of immunostained GCR in the colon compared with the small intestine, as has been shown earlier with ligand-binding assays. 32,9 % and 14,5 % of the cells of the lamina propria were GCR immunoreactive in the small intestine of barrows and boars. In the colon 49,3 % and 43,3 % showed immunostaining. Epithelial cells showed a reversed pattern compared to the lamina propria in both groups. The number of GCR immunoreactive cells in barrows and boars decreased from 9,6 % and 9 % in the small intestine to 5,4 and 5,6 % in the colon, respectively. Comparison of both groups ? barrows and boars - revealed significant differences in the number of GCR immunoreactive cells in the lamina propria of the small bowl. Boars showed a decreased GCR expression of 10 % in the duodenum and 30 % in the jejunum. The number of GCR immuostained colonic cells amounts to 36,9 % in the colon ascendens and 49,2% in the colon descendens of boars and 47,5 % and 51 % in barrows. Studies of the subcellular localization by western blot analysis of cytosolplasmic and nuclear proteins demonstrated that in both groups in the ileum a higher amount of GCR was translocated into the nucleus. In the colon the number of cytoplasmic GCR was higher. The different subcellular GCR distribution in the two segments of the intestine can be explained by the increased expression of 11â-hydroxysteroid dehydrogenase 2 in the colon. 11â-HSD 2 inactivates cortisol and thus inhibits receptor activation and thereby translocation to the nucleus.Publication Mechanismen der Mastzellaktivierung durch gram-negative Bakterien und Bakterienprodukte aus der Darmflora.(2006) Krämer, Sigrid; Bischoff, Stephan C.The role of mast cells (MC) as effector cells in IgE dependent processes like the type 1 allergy has been known for a long time. During the decade, it has been shown that MC are also involved in other pathophysiological processes such as mucosal polyposis, rheumatoid arthritis, inflammatory bowl disease, tissue fibrosis, and atherosclerosis. Furthermore, MC play an important role in the regulation of host defense against microbes, tissue remodeling processes, and neuro-immunology-interaction. The first aim of the present study was to clarify the question whether human intestinal MC express toll-like receptors (TLR), which recognize conserved bacterial and viral components, and can MC be activated through TLR-ligands. The second major focus of the present study was to investigate if the stimulation of human intestinal MC with different E. coli and Shigella strains, respectively, results in an activation of MC and to identify the underlying mechanism(s). Accordingly, human intestinal MC were isolated from surgery tissue with a mechanical and enzymatical protocol. The purity of the MC cultures used in all experiments was between 98 and 100% which was achieved by positive selection (MACS). We could show, that human intestinal MC express mRNA for TLR 1, 2, 3, 4, 5, 6, 8, and 9. However, neither the stimulation with LPS (lipopolysaccharide, TLR 4 ligand), LTA (lipoteichoic acid, TLR 2 ligand), Zymosan (TLR 2 ligand), poly I:C (polyinosinic-polycytidylic acid, TLR 3 ligand), R848 (TLR 7/8 ligand), CpG (C poly G oligo-desoxy-nucleotide, TLR 9 ligand) and non CpG, respectively resulted in a release of histamine, leucotriens, TNF-alpha, or IL-8. Furthermore, mRNA expression levels of TNF-alpha and IL-8 were not induced by any of the treatments. Similar results where found when human intestinal MC were stimulated with E. coli (O101:H-) isolated from human faeces or the probiotic strain E. coli Nissle 1917. Even after stimulation with pathogenic bacteria strains such as the invasive S. flexneri M90T and the fimbriated E. coli, respectively, no induction of any of the parameters mentioned above was found. However, E. coli strains activate the intracellular signal molecule and transcription factors ERK1/2, c-Fos, and AP1, but this activation failed to induce a complete immune answer. In contrast, the hemolytic E. coli stains ATCC 25922 and ATCC 35218 provoked strong activation of intestinal MC. Using the isogenic hemolysin negative E. coli mutants and the hemolysin positive transformants of the probiotic E. coli Nissle 1917 it was shown, that human intestinal MC are sensitive target cells for E. coli alpha hemolysin. Stimulation of MC with sublytic concentration of hemolysin resulted in an induction of TNF-alpha, IL-3, IL-5, IL-6, IL-8 mRNA expression, the release of histamine as well as leucotrien. This activation was found to be regulated by calcium dependent signal cascades. Inhibition of intracellular signal molecules showed that the activation depends on L-typ calcium channels, calcineurin, NFAT and NFkappaB. Prolonged infection with hemolytic E. coli strains resulted in lysis of intestinal MC indicating a biphasic activation of hemolysin.Publication Novel bacterial species from the chicken gastrointestinal tract and their functional diversity(2023) Rios Galicia, Bibiana; Seifert, JanaThe digestive system of chicken presents different physicochemical conditions along the gastrointestinal tract (GIT), shaping an individual microbial profile along sections with different metabolic capacities and divergence on the adaptations to the environment. Efforts to obtain cultivable bacteria originating from the upper region of chicken GIT enrich the reference genome database and provide information about the site- specific adaptations of bacteria colonizing such GIT sections allowing to understand the metabolic profile and adaptive strategies to the environment. However, the lack of sufficient reference genomes limits the interpretation of sequencing data and restrain the study of complex functions. In this study, 43 strains obtained from crop, jejunum and ileum of chicken were isolated, characterised and genome analysed to observe their metabolic profiles, adaptive strategies and to serve as future references. Eight isolates represent new species that colonise the upper gut intestinal tract and present consistent adaptations that enable us to predict their ecological role, expanding our knowledge on the adaptative functions. Strains of Limosilactobacillus were found to be more abundant in the crop, while Ligilactobacillus dominated the ileal digesta. Isolates from crop encode a high number of glycosidases specialised in complex polysaccharides compared to strains isolated from jejunum and ileum. While isolates from jejunum and ileum encode a higher number of genes that interact with the host such as collagenases and hyaluronidases, indicating preferential persistence and adaptations along the GIT. These results represent the first repository of bacteria obtained from the crop and small intestine of chicken using culturomics, improving the potential handling of chicken microbiome with biotechnological applicationsPublication The porcine intestinal microbiota : studies on diversity and dietary impact(2018) Burbach, Katharina; Seifert, JanaThe entirety of microbial communities within the gastrointestinal tract is referred to as intestinal microbiota and is predominantly composed of bacteria. Interactions between the microbiota, the host and the diet are essential for maintaining a healthy and functional intestinal ecosystem. The overarching aim of this thesis was the characterization of the porcine intestinal microbiota and further to enhance knowledge about the effects of varying diets. High-throughput sequencing of the 16S rRNA gene facilitates exploration of the taxonomic composition of the microbiota. However, the respective findings may be impaired by methodological variations. Thus, within this thesis, commercial DNA extraction kits are evaluated for their suitability in porcine microbiota analysis. The tested extractions yield into variations of quantity and quality of DNA. The DNA extracts are further used to elucidate the structure of the microbiota by a rapid fingerprinting (Terminal Restriction Fragment Length Polymorphism) and high-resolution sequencing (Illumina amplicon sequencing). While different variable regions of the 16S rRNA gene vary in the taxonomical resolution, sequencing analyses exhibit a good comparability of the two regions V1-V2 and the V5-V6. Furthermore, the microbiota profiles reveal a high consistency by the fingerprinting and sequencing approach but are distinguished by the different DNA extraction kits. Based on criteria of DNA extraction and the depicted microbiota composition, it is recommended to use the FastDNA SPIN Kit for Soil for further analysis of porcine intestinal microbiota. Subsequently, these methodological findings are applied to investigate the impact of varying diets. Illumina amplicon sequencing of the V1-V2 region of the 16S rRNA gene reveals different microbiota structures when diets are solely composed of rye or triticale. Besides the taxonomic analyses of ileal digesta and fecal samples, the concentrations of bacterial metabolites in feces are determined. In summary, rye promotes an increased abundance of saccharolytic bacteria like Lactobacillus, Bifidobacterium, and Prevotella and results in higher concentrations of bacterial metabolites in fecal samples. In contrast, a diet based on triticale is associated with an increased abundance of Clostridium sensu stricto, which may indicate an enhanced cellulolytic potential of the microbiota. When the crude protein content is increased (18%), compared to a lower content (14%), an increased abundance of Lactobacillus is demonstrated in microbiota of ileal digesta samples. However, the content of crude protein did not affect the overall microbiota significantly. In addition, dietary supplementation with probiotic Bacillus spp. shows no effect. In conclusion, these dietary effects on microbiota are considered together with results of a protein digestibility analysis. Moreover, an impact of dietary calcium and phosphorus in combination with different sources of dietary protein is analyzed by fingerprinting approach of digesta samples. Here, the content of calcium-phosphorus shows significant effects on the microbiota of caecal digesta and the putative identities of discriminative variables are determined by a cloning-sequencing approach. Similar, 16S rRNA gene sequencing reveals a significant impact of dietary calcium-phosphorus on the overall fecal microbiota without indicating specific discriminating variables. In combination with the results of a meta-proteomic approach, a gradual adaptation on dietary changes is indicated and consequently, a prolonged adaptation time of three to four weeks is recommended for diet-microbiota studies. This thesis includes a comprehensive analysis of the microbiota across and along the gastrointestinal tract of piglets and explores the dietary inclusion of four levels of insect larvae meal. Feeding insects represent an alternative source of dietary protein, whereby the increased content of chitin indicates a potential shift in microbiota composition compared to a control diet. However, in this case, the structural analysis demonstrates no effects on the overall microbiota’s structure. However, a pairwise comparison between diets reveals significant effects on the microbiota of digesta samples of the small intestine. Dietary inclusion of 5% insect meal increases the abundance of Lactobacillus, whereas the control treatment promotes Bifidobacterium. In conclusion, the results of the present thesis emphasize the importance of standardization within 16S rRNA gene based studies of the porcine intestinal microbiota. Furthermore, the necessity of studying various sampling sites combined with multidisciplinary approaches is demonstrated.Publication Toll-like Receptor 9 (TLR9) activation and the innate immune response to microbial and human DNA(2023) Hsu, Emily; Fricke, Florian W.The human Toll-like Receptor 9 (TLR9) is an endosomal Pattern Recognition Receptor (PRR) that recognizes DNA sequences containing the unmethylated Cytosine-Guanine (CpG) dimers, which are present in greater abundance in most bacterial genomes compared to those of vertebrates. Specific CpG-containing sequences are strongly stimulatory of human TLR9, as shown in published studies using synthetic oligonucleotides (ODN) and DNA from bacterial species of varying genomic CpG concentration. Human TLR9 activation was experimentally examined in this thesis using DNA extracted from different bacterial sources, human DNA from Caco-2 cells, known immunostimulatory ODN, and short ODN. In vitro assays using fragment length-standardized microbial genomic DNA on HEK-Dual TLR9 Cells and human peripheral blood mononuclear cells (PBMCs) revealed that TLR9 activation strongly correlated to CpG concentration of the input DNA, with an additional influence of CpG-containing 5-mer TCGTT concentration. When DNA of varying origins and fragment lengths were used together, however, complex dynamics of TLR9 activation, co-activation, and repression were observed, which were less predictable than expected from genomic CpG concentration alone. DNase I-treated microbial DNA fragments of less than 15 bp of length were non-activating on their own, but co-activated human TLR9 together with ODN-2006 in Ramos Blue (B) cells. Similarly, human DNA fragments at the length of 50-200 bp co-activated human TLR9 with both ODN-2006 and Escherichia coli DNA in HEK-dual TLR9 cells. In contrast, large human DNA fragments at over 10000 bp of length repressed TLR9 activation by ODN-2006 in Ramos Blue cells. Finally, a preliminary study was conducted in HT-29 cells on the effect of TLR9 activation on the invasion of Fusobacterium nucleatum, an opportunistic gut pathogen with a very low genomic CpG concentration at 0.296%, using ODN-2006 and human DNA as TLR9 activators. While increased presence of intracellular Fusobacterium nucleatum upon treatment with both ODN-2006 and human DNA was noted, more studies are needed to confirm TLR9 activation as a cause of greater bacterial invasion. The human colon is the location of the largest microbial population of the human body, which provides a rich source of non-human DNA in contact with human TLR9 present in intestinal epithelial cells, plasmacytoid dendritic cells (pDCs), and B lymphocytes. Additionally, the daily mass shedding and death of human intestinal epithelial cells provide large amounts of human DNA, which when combined with microbial DNA could result in co-activation and possible autoimmunity. The thesis thus provided an in vitro model of TLR9 activation by complex DNA of varying origins and fragment lengths likely to present in the human gut environment, and prepared a working basis for future studies of TLR9 activation by human fecal metagenomic DNA.