Browsing by Subject "Denitrification"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Influence of land use on abundance, function and spatial distribution of N-cycling microorganisms in grassland soils(2015) Keil, Daniel; Kandeler, EllenThis thesis focuses on the influence of land use on the abundance, function and spatial distribution of N-cycling microorganisms in grassland soils, but also on soil biogeochemical properties, as well as on enzyme activities involved in the carbon-, nitrogen-, and phosphorous cycle. The objective of this thesis was tackled in three studies. All study sites that were investigated as part of this thesis were preselected and assigned according to study region and land use within the framework of the “Exploratories for Functional Biodiversity Research – The Biodiversity Exploratories” of the Deutsche Forschungsgemeinschaft priority program 1374. The first study addressed the question whether land-use intensity influences soil biogeochemical properties, as well as the abundance and spatial distributions of ammonia-oxidizing and denitrifying microorganisms in grasslands of the Schwäbische Alb. To this end, a geostatistical approach on replicated grassland sites (10 m × 10 m), belonging to either unfertilized pastures (n = 3) or fertilized mown meadows (n = 3), representing low and high land-use intensity, was applied. Results of this study revealed that land-use intensity changed spatial patterns of both soil biogeochemical properties and N-cycling microorganisms at the plot scale. For soil biogeochemical properties, spatial heterogeneity decreased with higher land-use intensity, but increased for ammonia oxidizers and nirS-type denitrifiers. This suggests that other factors, both biotic and abiotic than those measured, are driving the spatial distribution of these microorganisms at the plot scale. Furterhmore, the geostatistical analysis indicated spatial coexistence for ammonia oxidizers (amoA ammonia-oxidizing archaea and amoA ammonia-oxidizing bacteria) and nitrate reducers (napA and narG), but niche partitioning between nirK- and nirS-type denitrifiers. The second study aimed at whether land-use intensity contributes to spatial variation in microbial abundance and function in grassland ecosystems of the Schwäbische Alb assigned to either low (unfertilized pastures, n = 3), intermediate (fertilized mown pastures, n = 3), or high (fertilized mown meadows, n = 3) land-use intensity. Plot-scale (10 m × 10 m) spatial heterogeneity and autocorrelation of soil biogeochemical properties, microbial biomass and enzymes involved in C, N, and P cycle were investigated using a geostatistical approach. Geostatistics revealed spatial autocorrelations (p-Range) of chemical soil properties within the maximum sampling distance of the investigated plots, while greater variations of p-Ranges of soil microbiological properties indicated spatial heterogeneity at multiple scales. An expected decrease in small-scale spatial heterogeneity in high land-use intensity could not be confirmed for microbiological soil properties. Finding smaller spatial autocorrelations for most of the investigated properties indicated increased habitat heterogeneity at smaller scales under high land-use intensity. In the third study, the effects of warming and drought on the abundance of denitrifier marker genes, the potential denitrification activity and the N2O emission potential from grassland ecosystems located in the Schwäbische Alb, the Hainich, and the Schorfheide region were investigated. Land use was defined individually for each grassland site by a land-use index that integrated mowing, grazing and fertilization at the sites over the last three years before sampling of the soil. It was tested if the microbial community response to warming and drought depended on more static site properties (soil organic carbon, water holding capacity, pH) in interaction with land use, the study region and the climate change treatment. It was further tested to which extent the N2O emission potential was influenced by more dynamic properties, e.g. the actual water content, the availability of organic carbon and nitrate, or the size of the denitrifier community. Warming effects in enhanced the potential denitrification of denitrifying microorganisms. While differences among the study regions were mainly related to soil chemical and physical properties, the land-use index was a stronger driver for potential denitrification, and grasslands with higher land use also had greater potentials for N2O emissions. The total bacterial community did not respond to experimental treatments, displaying resilience to minor and short-term effects of climate change. In contrast, the denitrifier community tended to be influenced by the experimental treatments and particularly the nosZ abundance was influenced by drought. The results indicate that warming and drought affected the denitrifying communities and the potential denitrification, but these effects are overruled by study region and site-specific land-use index. This thesis gives novel insights into the performance of N-cycling microorganisms in grassland ecosystems. The spatial distribution of soil biogeochemical properties is strongly dependent on land-use intensity, as in return is the spatial distribution of nitrifying and denitrifying microorganisms and the ecosystem services they perform. Yet, future work will be necessary to fully understand the interrelating factors and seasonal variability, which influence the ecosystem functioning and ecosystem services that are provided by N-cycling soil microorganisms at multiple scales.Publication Organic matter composition of digestates has a stronger influence on N2O emissions than the supply of ammoniacal nitrogen(2021) Petrova, Ioana Petrova; Pekrun, Carola; Möller, KurtManures can be treated by solid–liquid separation and more sophisticated, subsequent approaches. These processes generate fertilizers, which may differ in composition and N2O release potential. The aim of the study was to investigate the influence of processing-related changes in digestate composition on soil-derived N2O emissions after application to soil. For that purpose, N2O emissions within the first 7 weeks after fertilization with two raw and eight processed digestates (derived from solid–liquid separation, drying and pelletizing of separated solid, and vacuum evaporation of separated liquid) were measured in the field in 2015 and 2016. Additionally, an incubation experiment was run for 51 days to further investigate the effect of subsequent solid and liquid processing on soil-derived N2O release. The results showed that, only in 2016, the separation of digestate into solid and liquid fractions led to a decrease in N2O emissions in the following order: raw digestate > separated liquid > separated solid. N removal during subsequent processing of separated solid and liquid did not significantly influence the N2O emissions after fertilization. In contrast, the concentrated application of the final products led to contradictory results. Within the solid processing chain, utilization of pellets considerably increased the N2O emissions by factors of 2.7 (field, 2015), 3.5 (field, 2016), and 7.3 (incubation) compared to separated solid. Fertilization with N-rich ammonium sulfate solution led to the lowest emissions within the liquid processing chain. It can be concluded that the input of less recalcitrant organic C into the soil plays a greater role in N2O release after fertilization than the input of ammoniacal N. Digestate processing did not generally reduce emissions but apparently has the potential to mitigate N2O emissions substantially if managed properly.Publication Ein Vergleich zwischen Barometrischer Prozessseparation (BaPS) und 15N-Verdünnungsmethode zur Bestimmung der Bruttonitrifikationsrate im Boden(2010) Schwarz, Ulrich; Streck, ThiloBesides the carbon cycle, the nitrogen cycle plays a central role in soil. A key process of this cycle is nitrification. In practice, nitrification is measured as gross or net nitrification. Net nitrification rates are measured by determining the net change in the nitrate or ammonium pool over a period of time. Net rates are difficult to interpret, because the net nitrification rate is the sum of nitrate producing and consuming processes. In contrast, gross nitrification quantifies the total production of nitrate via nitrification. There are two methods for measuring gross nitrification: the 15N-Pool dilution technique and Barometric Process Separation (BaPS). In the 15N-Pool dilution technique, nitrate en-riched with the heavier isotope 15N is added to soil, and the dilution of the 15N pool and the change in the nitrate pool are measured over time. The BaPS method measures changes in pressure and the oxygen- and carbon dioxide concentration of the atmosphere in a closed chamber. The gross nitrification rate can then be computed by a step-by-step solution of the gas balance equations. In the present study, 15N enriched nitrate was added to soil and then put into the BaPS-incubation chamber. By this procedure gross nitrification rates were measured simultaneously with both the 15N-Pool dilution technique and the BaPS method. The aim of the present study was to find out under which conditions the two methods yield similar results and under which conditions different results. In the latter case, the thesis aimed at elucidating the cause for the disagreement between both methods. For this purpose extensive research on two agricultural soils from North China and three soils from Southwest Germany was undertaken. The two methods were compared under the following conditions: 1) application of ammonium fertilizer, 2) addition of nitrification inhibitors, 3) varying soil wa-ter contents, and 4) different soil temperatures. Moreover, a new methodological approach was tested: the 13CO2-Pool dilution technique. Combining this method with the 15N-Pool dilu-tion technique and the Barometric Process Separation made it possible to exactly determine the pH and respiration coefficient in situ. Both techniques corresponded well in soil with pH<6. In soil with higher pH, both methods led to very different results. The reason is that pH has a strong impact on the calculation of the nitrification rate in the BaPS method. In nearly all experiments with neutral to alkaline soils, the BaPS technique yielded higher nitrification rates than the 15N-Pool dilution technique if pH was determined in 0.01 M CaCl2. With pH determined in water, there was good agreement or nitrification rates were too low. Fertilization with ammonium did not in-duce an increase of nitrification in a sandy soil with pH<6. A decrease in nitrification to less than 60% was achieved by the application of the nitrification inhibitor DCD. For both techniques a positive correlation between temperature and nitrification rates was found. There was no correlation between water filled pore space and nitrification rate.