Browsing by Subject "Doppelhaploide"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Publication Gene mining in doubled haploid lines from European maize landraces with association mapping(2014) Strigens, Alexander Carl Georg; Melchinger, Albrecht E.Since the introduction of maize into Europe, open-pollinated varieties of flint maize were cultivated across the continent. Natural selection promoted adaptation to the climatic conditions prevailing in the different regions. With the advent of hybrid breeding in Europe during the 1950’s, some of the genes responsible for the specific adaptations of the landraces to abiotic and biotic stress were captured in the first developed inbred lines, but most of their genetic diversity is still untapped. Development of inbred lines out of this material by recurrent selfing is very tedious due to strong inbreeding depression. In contrast, the doubled-haploid (DH) technology allows producing fully homozygous lines out of landraces in only one step. This allows their precise characterization in replicated trials and identification of new genes by genome wide association (GWA) mapping. In this study we genotyped a set of 132 DH lines derived from European Flint landraces and 364 elite European flint (EU-F), European dent (EU-D) and North-American dent (NA-D) inbred lines with 56,110 single nucleotide polymorphism (SNP) markers. The lines were evaluated in field trials for morphologic and agronomic traits and GWA mapping was performed to identify underlying quantitative trait loci (QTL). In particular, our objectives were to (1) develop a robust method for quantifying early growth with a non-destructive remote-sensing platform, (2) evaluate the importance of early growth performance of inbred lines with regard to their testcross performance, (3) determine the potential of GWA mapping to identify genes underlying early growth and cold tolerance related traits, (4) evaluate the phenotypic and genotypic diversity recovered in the DH lines derived from the landraces, (5) estimate the effect of the DH method on the recovered genetic diversity, (6) identify new genes by GWA mapping in the DH lines derived from landraces, and (8) discuss the potential of DH lines derived from landraces to improve the genetic diversity and performance of elite maize germplasm. A phenotyping platform using spectral reflectance and light curtains was used to perform repeated measurements of biomass and estimate relative growth rates (RGR) of the DH and inbred lines, as well as of two testcrosses of 300 dent inbred lines. The DH lines derived from the landraces Schindelmeiser and Gelber Badischer had the highest RGR followed by EU-F lines, DH lines derived from Bugard, EU-D lines and, finally, NA-D lines. For inbred lines, whole plant dry matter yield (DMY) was positively correlated with RGR (r = 0.49), whereas this relation was weaker in the testcrosses (r = 0.29). RGR of the inbred lines correlated with RGR of their testcrosses (r = 0.42), but it had no influence on testcross DMY. A set of 375 EU-F, EU-D and NA-D lines were further evaluated in growth chambers under chilling (16/13°C) and optimal (27/25°C) temperatures. Photosynthetic and early growth performance were estimated for each treatment and an adaptation index (AI) built as the chilling to optimal performance ratio. Nineteen QTL were identified by GWA mapping for trait performance and AI. Candidate genes involved in ethylene signaling, brassinolide, and lignin biosynthesis were found in their vicinity. Several QTL for photosynthetic performance co-located with previously reported QTL and the QTL identified for shoot dry wieght under optimal conditions co-located with a QTL for RGR. Comparison of the DH lines derived from landraces with the EU-F lines showed that genotypic variances in single DH populations were greater than in the EU-F breeding population. A high average genetic distance among the DH lines derived from the same landrace as well as a rapid decay of linkage disequilibrium suggests a high effective population size of the landraces. Because no systematic phenotypic differences were observed between the landraces and synthetic landraces obtained by intermating the corresponding DH lines, the expected purge of lethal recessive alleles during the DH production did neither improve grain yield performance nor affect the recovered genetic diversity. Performing GWA in the DH lines derived from landraces as well as the EU-F, and EU-D lines allowed the identification of 49 QTL for 27 traits. A larger set of DH lines derived from more landraces might solve problems arising from population structure and allow a much higher power for the detection of new alleles. In conclusion, the introgression of DH lines derived from landraces into the elite breeding material would strongly broaden its genetic base. However, grain yield performance was 22% higher in EU-F lines than in the DH lines derived from landraces. Selection of the best DH lines would allow partially bridging this yield gap and marker-assisted selection may allow introgression of positive QTL without introducing negative features by linkage drag.Publication Improvements of the doubled haploid technology in maize(2019) Molenaar, Willem; Melchinger, Albrecht E.The in vivo doubled haploid (DH) technology in maize carries many advantages over traditional line development by recurrent selfing and has played an integral role in numerous breeding programs since the early 21st century. A bottleneck in the DH technology is still the success rate of chromosome doubling treatment, which has a strong influence on the costs of DH production. Currently, only a minority (~10%) of treated D0 haploid plants result in DH lines. Improvement in the chromosome doubling step of DH production would not only make DH lines cheaper, but could also change the optimum allocation of resources in hybrid breeding. In addition, the development of treatments using alternative doubling agents to colchicine, which is toxic to humans, would improve worker safety and simplify waste disposal issues for developing countries to benefit from the DH technology. Initiating such developments is the goal of this thesis. In a first step, we evaluated anti-mitotic herbicides with different modes of action as alternatives to colchicine for reducing the toxicity of chromosome-doubling treatment and for potentially increasing the success rates. In a series of experiments, we evaluated anti-mitotic herbicides with different modes of action in different concentrations and combinations. Based on the results of the initial experiments, we chose a specific concentration of amiprophos-methyl for evaluation in combination with varying concentrations of pronamide in a further experiment. This revealed the optimal concentration of pronamide in combination with the chosen concentration of amiprophos-methyl. However, this less-toxic treatment showed slightly lower success rates and slightly higher costs per DH line as compared to the standard colchicine treatment. In a second step after evaluating anti-mitotic herbicides for seedling treatment, we evaluated gaseous treatments using nitrous oxide (N2O), an anti-mitotic gas, in varying concentrations and combinations with air and pure oxygen. In two years of evaluation, we found an N2O treatment which had similar success rates as colchicine. The major benefit of such treatment is that this gas can simply be released into the atmosphere, eliminating the difficulty of proper chemical waste disposal, which is difficult to secure in developing countries. The only requirement is a treatment chamber, in contrast to the laboratory facilities required for handling colchicine. In a third step, we evaluated the potential of spontaneous chromosome doubling (SCD) as an alternative to chemical treatment-based chromosome doubling. Although previous studies found significant genetic variation and high heritability for SCD, a classical quantitative genetic analysis, elucidating the type of gene action governing this trait, and a selection experiment for improving SCD was missing in the literature. We found a predominance of additive genetic effects compared to epistatic effects, and a large selection gain after three cycles of recurrent selection for SCD to levels far beyond those reached by standard colchicine treatment. This indicates the great potential of SCD to improve the DH technology. The approximately ten-fold increase in spontaneous chromosome doubling rate (SDR) reached in our recurrent selection experiment marks a paradigm shift in the chromosome doubling step of DH production in maize. DH production efficiency can be greatly increased by the vast improvement in SDR, and production can be further simplified to enable even higher throughput. Instead of chromosome doubling treatment, which involves much handling of seedlings, haploid seeds from germplasm with a high innate ability to produce seed set without chemical treatment can be simply seeded in the DH nursery, eliminating the most costly production steps. Thus, this thesis has provided new opportunities to increase worker safety and reduce toxic waste in DH production, and further provided a proof of concept for genetic improvement of spontaneous chromosome doubling, which has great prospects for increasing the efficiency of DH production in maize.Publication Improving host resistance to Fusarium head blight in wheat (Triticum aestivum L.) and Gibberella ear rot in maize (Zea mays L.)(2023) Akohoue, Félicien; Miedaner, ThomasFusarium head blight (FHB) in wheat and Fusarium (FER) and Gibberella ear rot (GER) in maize are major cereal diseases which reduce yield and contaminate kernels with several mycotoxins. In Europe, these diseases contribute to significant yield gaps and high mycotoxin risks across countries. However, existing management strategies related to agronomic practices are not fully effective, with some of them being cost-prohibitive. Enhancing host plant resistance is additionally required for managing the diseases more effectively and sustainably. Unfortunately, breeding for FHB resistance is challenged by complex interactions with morphological traits and the quantitative nature of the trait. In maize, available genetic resources have not been fully exploited to improve GER resistance in elite materials. In this work, we elucidated the complex interactions between FHB resistance and morphological traits, like plant height (PH) and anther retention (AR) in wheat. The effect of reduced height (Rht) gene Rht24 on AR and the contribution of genomic background (GB) to FHB resistance in semi-dwarf genotypes were also assessed. GB refers to all genomic loci, except major Rht genes, that affect the traits. To achieve this, 401 winter wheat cultivars were evaluated across five environments (location × year combination). All cultivars were genotyped using Illumina 25 K Infinium single-nucleotide polymorphism array. We performed correlation and path coefficient analysis, and combined single and multi-trait genome-wide association studies (GWAS). Our findings revealed significant genotypic correlations and path effects between FHB severity with PH and AR, which were controlled by several pleiotropic loci. FHB severity and PH shared both negatively and positively acting pleiotropic loci, while only positively acting pleiotropic loci were detected between FHB severity and AR. Rht-D1 is a major pleiotropic gene which exerted a negative effect on FHB resistance. These pleiotropic loci contribute to our understanding of the complex genetic basis of FHB resistance, and their exploitation can help to simultaneously select for FHB resistance with PH and AR. Contrary to Rht-D1b, Rht24b had no negative effect on FHB resistance and AR. This exhibits Rht24 as an important FHB-neutral Rht gene which can be integrated into breeding programs. Genomic estimated breeding values (GEBV) were calculated for each cultivar to assess GB. We observed highly negative GEBV for FHB severity within resistant wheat cultivars. Susceptible cultivars exhibited positive GEBV. Genomic prediction has a great potential and can be exploited by selecting for semi-dwarf winter wheat genotypes with higher FHB resistance due to their genomic background resistance. To tackle maize ear rot diseases, refined and stable quantitative trait loci (QTL) harboring candidate genes conferring resistances to FER and GER were identified. The effectiveness of introgression of two European flint landraces, namely “Kemater Gelb Landmais” (KE) and “Petkuser Ferdinand Rot” (PE) was evaluated. The prediction accuracy of using line performance as a predictor of hybrid performance for GER resistance was also evaluated within the two landraces. We applied a meta-QTL (MQTL) analysis based on 15 diverse SNP-based QTL mapping studies and performed gene expression analysis using published RNA-seq data on GER resistance. In total, 40 MQTL were identified, of which 14 most refined MQTL harbored promising candidate genes for use in breeding programs for improving FER and GER resistances. 28 MQTL were common to both FER and GER, with most of them being shared between silk (channel) and kernel resistances. This highlights the co-inheritance of FER and GER resistances as well as types of active resistance. Resistance genes can be transferred into elite cultivars by integrating refined MQTL into genomics-assisted breeding strategies. Afterwards, four GER resistant doubled haploid (DH) lines from both KE and PE landraces were crossed with two susceptible elite lines to generate six bi-parental populations with a total of 534 DH lines which were evaluated for GER resistance. GER severity within the six landrace-derived populations were reduced by 39−61% compared to the susceptible elite lines. Moderate to high genetic advance was observed within each population, and the use of KE landrace as a donor was generally more effective than PE landrace. This shows promise in enhancing resistance to GER in elite materials using the European flint landraces as donors. Furthermore, per se performance of 76 DH lines from both landraces was used to predict GER resistance of their corresponding testcrosses (TC). Moderate phenotypic and genomic prediction accuracy between TC and line per se performance was found for GER resistance. This implies that pre-selecting lines for GER resistance is feasible; however, TC should be additionally tested on a later selection stage to aim for GER-resistant hybrid cultivars.Publication Optimum schemes for hybrid maize breeding with doubled haploids(2011) Wegenast, Thilo; Melchinger, Albrecht E.In hybrid maize breeding, the doubled haploid technique is increasingly replacing conventional recurrent selfing for the development of new lines. In addition, novel statistical methods have become available as a result of enhanced computing facilities. This has opened up many avenues to develop more efficient breeding schemes and selection strategies for maximizing progress from selection. The overall aim of the present study was to compare the selection progress by employing different breeding schemes and selection strategies. Two breeding schemes were considered, each involving selection in two stages: (i) developing DH lines from S0 plants and evaluating their testcrosses in stage one and testcrosses of the promising DH lines in stage two (DHTC) and (ii) early testing for testcross performance of S1 families before production of DH lines from superior S1 families and then evaluating their testcrosses in the second stage (S1TC-DHTC). For both breeding schemes, we examined different selection strategies, in which variance components and budgets varied, the cross and family structure was considered or ignored, and best linear unbiased prediction (BLUP) of testcross performance was employed. The specific objectives were to (1) maximize through optimum allocation of test resources the progress from selection, using the selection gain (ΔG) or the probability to select superior genotypes (P(q)) as well as their standard deviations as criteria, (2) investigate the effect of parental selection, varying variance components and budgets on the optimum allocation of test resources for maximizing the progress from selection, (3) assess the optimum filial generation (S0 or S1) for DH production, (4) compare various selection strategies - sequential selection considering or ignoring the cross and family structure - for maximizing progress from selection, (5) examine the effect of producing a larger number of candidates within promising crosses and S1 families on the progress from selection, and (6) determine the effect of BLUP, where information from genetically related candidates is integrated in the selection criteria, on the progress from selection. For both breeding schemes, the best strategy was to select among all S1 families and/or DH lines ignoring the cross structure. Further, in breeding scheme S1TC-DHTC, the progress from selection increased with variable sizes of crosses and S1 families, i.e., larger numbers of DH lines devoted to superior crosses and S1 families. Parental cross selection strongly influenced the optimum allocation of test resources and, consequently, the selection gain ΔG in both breeding schemes. With an increasing correlation between the mean testcross performance of the parental lines and the mean testcross performance of their progenies, the superiority in progress from selection compared to randomly chosen parents increased markedly, whereas the optimum number of parental crosses decreased in favor of an increased number of test candidates within crosses. With BLUP, information from genetically related test candidates resulted in more precise estimates of their genotypic values and the progress from selection slightly increased for both optimization criteria ΔG and P(q), compared with conventional phenotypic selection. Analytical solutions to enable fast calculations of the optimum allocation of test resources were developed. This analytical approach superseded matrix inversions required for the solution of the mixed model equations. In breeding scheme S1TC-DHTC, the optimum allocation of test resources involved (1) 10 or more test locations at both stages, (2) 10 or fewer parental crosses each with 100 to 300 S1 families at the first stage, and (3) 500 or more DH lines within a low number of parental crosses and S1 families at the second stage. In breeding scheme DHTC, the optimum number of test candidates at the first stage was 5 to 10 times larger, whereas the number of test locations at the first stage and the number of DH lines at the second stage was strongly reduced compared with S1TC-DHTC. The possibility to reduce the number of parental crosses by selection among parental lines is of utmost importance for the optimization of the allocation of test resources and maximization of the progress from selection. Further, the optimum allocation of test resources is crucial to maximize the progress from selection under given economic and quantitative-genetic parameters. By using marker information and BLUP-based genomic selection, more efficient selection strategies could be developed for hybrid maize breeding.Publication Utilization of landraces of European flint maize for breeding and genetic research(2023) Renner, Juliane; Melchinger, Albrecht E.Mais ist eine der wichtigsten Kulturarten für die Landwirtschaft weltweit. Seit seiner Domestikation bildeten Landrassen den traditionellen Sortentyp. Durch Selektion und genetische Faktoren entstand eine breite Diversität an panmiktisch vermehrten Populationen, die gut an lokale Bedingungen angepasst waren. Dies änderte sich mit der Einführung der Hybridzüchtung, als nahezu alle Landrassen in der landwirtschaftlichen Produktion und als Ausgangsmaterial für die Züchtung verschwanden. Molekulare Analysen zeigen eine enge genetische Basis des Flint Pools im Vergleich zum Dent Pool. Genetische Ressourcen im Mais gehören zu den umfangreichsten aller Nutzpflanzen. Die Nutzung dieses bislang ungenutzten Reservoirs an genetischer Diversität in Landrassen bietet eine Möglichkeit, um der fortschreitenden Einengung der genetischen Basis entgegenzuwirken und somit den Aufgaben der Pflanzenzüchtung im Hinblick auf eine wachsende Weltbevölkerung sowie den Herausforderungen des Klimawandels und reduzierten Inputs im Anbau gerecht zu werden. Übergeordnetes Ziel dieser Studie war die Evaluierung europäischer Flint-Mais Landrassen, um deren genetische Vielfalt nutzen zu können. Im Speziellen waren die Ziele (i) die Variation in Testkreuzungen europäischer Mais-Landrassen zu bestimmen; (ii) die phänotypische und genotypische Variation der Linien innerhalb und zwischen Landrassen zu beurteilen; (iii) die Eigenleistung dieser Linien mit Elite-Linien sowie Founder-Linien aus dem europäischen Flint-Pool zu vergleichen; (iv) das Potential von doppelhaploiden (DH) Linien aus Landrassen im Vergleich zum Elitematerial für die Züchtung zu analysieren, um die enge genetische Basis des Flint-Pools zu erweitern; (v) die Verwendung von DH-Bibliotheken aus Landrassen für die Assoziationskartierung bis hin zur Eingrenzung kausaler Gene zu demonstrieren; und (vi) Schlussfolgerungen und Leitlinien für die Züchtung und Forschung zu erörtern , um DH-Linien aus Landrassen nutzbar zu machen. In einem ersten Versuch wurde eine umfangreiche Kollektion von 70 europäischen Flint-Landrassen mehrortig in Kombination mit zwei Elite Dent-Testern auf ihre Testkreuzungsleistung hin untersucht. Verglichen mit dem Ertrag moderner Hybriden war der Kornertrag der Testkreuzungen der Landrassen im Durchschnitt um 26 % geringer, jedoch wurde eine hohe genotypische Varianz zwischen den Landrassen für alle Merkmale beobachtet. Die Korrelationen waren mittel bis hoch für die meisten Merkmalskombinationen und entsprachen denen im Elitezuchtmaterial. Die genetische Korrelation der beiden Testkreuzungsserien überstieg 0,74 für alle Merkmale. Dies zeigt, dass es ausreicht die Leistung von Testkreuzungen in Kombination mit einem oder zwei Testern - bestehend aus Einfachkreuzungen des anderen Gen-Pools – zu bewerten, um das Potenzial von Landrassen für die Züchtung zu beurteilen. In einem zweiten Versuch produzierten wir Bibliotheken von DH-Linien der vielversprechendsten Landrassen des vorigen Versuches. Insgesamt wurden 389 DH-Linien aus sechs europäischer Flint Landrassen zusammen mit vier Flint Founder-Linien und 53 Elite Flintlinien auf 16 agronomische Merkmale an vier Standorten geprüft. Die genotypische Varianz (σ^2G) innerhalb der DH-Bibliotheken war größer als die zwischen den Bibliotheken und übertraf auch σ^2G der Elite Flintlinien. Darüber hinaus variierten die Mittelwerte und σ^2G zwischen den DH-Bibliotheken, was zu großen Unterschieden im Brauchbarkeits-Kriterium („usefulness“) führte. Der mittlere Kornertrag der Elite Flintlinien übertraf den der Flint Founder-Linien um 25 % und der DH-Bibliotheken um 62 %, was auf den beträchtlichen Zuchtfortschritt im Elitematerial hinweist sowie auf die erhebliche genetische Bürde, welche in den DH-Bibliotheken vorliegt. Die Brauchbarkeit der besten DH-Linien war trotzdem für viele Merkmale, einschließlich dem Kornertrag, mit der von Elite Flintlinien vergleichbar. Dies zeigt das enorme Potenzial, Landrassen zur Verbreiterung des genetisch engen Elite Flint-Pools zu verwenden. In einem dritten Versuch wurden das genetische Material des vorherigen Versuches mit dem MaizeSNP50 BeadChip von Illumina® genotypisiert und Samen aller Genotypen zur Extraktion und Analyse von 288 Metaboliten mit GC-MS verwendet. Sowohl die agronomischen Merkmale als auch die Metabolit-Daten wurden für eine Assoziationskartierung verwendet. Der schnelle Abfall des Kopplungsungleichgewichts benachbarter Marker in den DH-Bibliotheken im Vergleich zu den Elite Flintlinien führte zu einer hervorragenden Auflösung in der QTL-Kartierung, was durch die Feinkartierung eines QTL (= quantitative trait locus) für Ölgehalt bis zur Phenylalanin Insertion F469 in DGAT1-2 als kausale Variante demonstriert werden konnte. Darüber hinaus wurden für den Metaboliten Allantoin, der im Zusammenhang mit abiotischem Stress steht, Promotorpolymorphismen sowie die Expression einer Allantoinase als vermutete Ursache der Variation identifiziert. Dies gelang trotz der moderaten Größe der Kartierungspopulation. Diese Ergebnisse sind ermutigend, um DH-Bibliotheken von Landrassen für die Assoziationskartierung zu verwenden und QTL bis auf die kausalen Varianten zu entschlüsseln. Eine Erweiterung der Populationsgrößen der DH-Bibliotheken, ähnlich wie sie in anderen Versuchsdesigns in der Literatur verwendet wurden, ist hierbei zu empfehlen, um mit diesem Ansatz QTL zu detektieren, welche lediglich einen kleinen Teil der genetischen Varianz erklären. Dies eröffnet neue Wege zur Nutzung natürlicher und/oder neu geschaffener Allele in der Züchtung. Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass die genetische Variation europäischer Landrassen bei Flint-Mais eine einzigartige Quelle darstellt, um die fortschreitende Verengung der genetischen Basis des Elitematerials in diesem Gen-Pool umzukehren. Um vielversprechende Landrassen zu identifizieren, schlagen wir folgenden zweistufigen Ansatz vor: (i) Basierend auf der Bewertung der molekularen Diversität werden etwa hundert Landrassen in Leistungsprüfungen auf ihre Anpassungsfähigkeit für die Zielregionen evaluiert und ihre Kombinationsfähigkeit mit dem entgegengesetzten heterotischen Gen-Pool in Testkreuzungen mit einer Einfachkreuzung als Tester bewertet. (ii) Für eine geringe Zahl (< 6) von Landrassen wird anschließend eine große Anzahl von DH-Linien erstellt, welche für die Nutzung in der Assoziationskartierung und/oder genomischen Selektion phänotypisiert und genotypisiert werden, um diese „Goldreserven“ für die Maiszüchtung mit innovativen Methoden zugänglich zu machen.