Browsing by Subject "Eiablage"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Leg attachment and egg adhesion of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) to different surfaces.(2014) Al Bitar, Loris; Zebitz, Claus P. W.Adults of Cydia pomonella live on host plant surfaces, differing considerably in their structural, chemical, and physicochemical characteristics according to host plant species, cultivar, plant organ, phenological stage, environmental conditions, and orchard management practices. This variable world provided by plant surfaces can profoundly affect many aspects of insect–plant interactions, such as attachment, locomotion, oviposition site selection, egg adhesion, and also survival of adults and their offsprings. Despite their importance, little attention has been given to the structural and wetting properties of the codling moth’s host plant surface and their effect on insect–plant interactions of this important pest. Therefore, studies in this thesis were undertaken to investigate the effect of structural and physicochemical characteristics of the substrate on two main codling moth-plant interactions: (1) the attachment ability of adults, and (2) the adhesion of their eggs. The first part of this thesis was performed to (1) analyze tarsal morphology of male and female C. pomonella to know more about their pretarsal attachment devices, and (2) to investigate their attachment ability on a variety of smooth and rough substrates, using a centrifugal force device. On all smooth artificial substrates tested, both sexes of C. pomonella adults achieved excellent attachment ability, by means of their smooth, flexible and well developed arolia. Hydrophobicity of the substrate had no considerable effect on friction forces. Cydia pomonella females showed a very good attachment ability to the smooth Plexiglas substrate in both horizontal and vertical positions. Thus, it can be concluded that the attachment system of C. pomonella is rather robust against physicochemical properties of the substrate and is able to achieve a very good attachment on vertical and horizontal plant surfaces. Results on the epoxy resin substrates, differing only in surface asperity size ranging from 0-12 µm revealed that the attachment ability of both sexes was significantly affected by surface roughness. Maximal friction force was measured on the smooth substrate whereas minimal friction force was assessed on microrough substrates with 0.3 µm and 1.0 µm size of asperities. On the remaining rough substrates, friction forces were significantly higher but still lower than on the smooth substrate. Both sexes generated similar friction forces on the same substrate, in spite of the considerable difference in their body mass, suggesting that both sexes attach effectively to variable rough plant surfaces in their habitat. However, since smooth surfaces have been reported previously to be the most favorable substrates for ovipositing females of C. pomonella, it is possible that they use their attachment system to sense the substrate texture and prefer those substrates to which their arolia attach the best. A better survival of the codling moth offspring is assumed to be ensured by the selection of suitable oviposition sites by females, as well as by a proper adhesion of deposited eggs to these sites. In apple orchards, eggs of the first generation of the codling moth are laid on leaf surfaces in the vicinity to small fruits, later in the growing season, most eggs are deposited directly on fruits. In the second part of this thesis, egg adhesion of the codling moth to different leaf and fruit surfaces of the domestic apple was investigated by measuring the pull-off force required to detach the eggs from the plant surface. Morphology, wettability, and free surface energy of the tested plant surfaces were analyzed to evaluate their role in egg adhesion. Furthermore, eggs and their adhesives covering leaf or fruit surfaces were visualized. Eggs on the smooth upper leaf sides of the tested cultivars were easily detached, requiring similar pull-off forces (total average of 6.0 mN). Up to 2-3 times stronger pull-off forces had to be applied to detach eggs from the trichome-covered lower leaf side, and these forces differed significantly between cultivars, owing mainly to different trichome covered areas. Whereas on the waxy fruit surface of all apple cultivars tested, eggs were very tightly adhered, and required 4-10 fold stronger pull-off forces than those previously measured on upper and lower leaf surfaces of the identical apple cultivars. Cydia pomonella eggs adhered stronger on the upper and middle fruit sections of all cultivars tested, than on the lower section. The influence of plant surface properties on egg adhesion, as well as the mechanisms used by the moth to overcome the presumable anti-adhesive properties of apple fruit surfaces, were discussed. Additionally, the results were debated in the context of the oviposition site selection, female attachment, as well as offspring survival of the codling moth.Publication Overwintering and reproduction biology of Drosophila suzukii Matsumura (Diptera: Drosophilidae)(2018) Zerulla, Florian Niklas; Zebitz, Claus P. W.Drosophila suzukii (Matsumura) was introduced to southern Europe and the United States of America in 2008 through fruit imports from Southeast Asia and spread in the following years all over Europe, as well as South and North America. D. suzukii is a polyphagous pest which infests fruits of soft-skinned wild and cultivated plants. In contrast to the well-known D. melanogaster, healthy and ripe fruits are preferred. The infestation is caused by female D. suzukii who damage the fruit skin to deposit eggs underneath with the help of their serrated ovipositor. The feeding of hatching larvae and secondary infections, which can easily penetrate through the damaged fruit, can lead to complete yield losses. A short reproductive period, a large range of host plants and infestation of the fruits, shortly before harvesting makes it extremely difficult to control the pest. Due to comparatively late infestation, the possible period of application during ripening and harvesting is limited. The same applies to the frequency of application of insecticides at this time. Possible residues on the harvested products also carry the risk of rejection of the fruit on the market. Furthermore, an incomplete knowledge of the biology, especially overwintering biology under European environmental conditions makes an effective control of this invasive pest extremely difficult. Therefore, the main research topics are the induction and refraction of the postulated diapause, the detection of any possible hibernation sites and the influence of temperature on the oviposition behaviour of D. suzukii. Based on field experiments it could be shown that successful wintering could probably only take place in forest areas. After freezing, the forest was the only place where D. suzukii could resume its flight activity at warmer temperatures. It has also been confirmed that female flies are more resistant to temperatures below freezing than male flies. Accordingly, after a frost period, hardly any male D. suzukii were caught in bait traps. Similar results have also been obtained in laboratory tests, showing that D. suzukii adapted to low temperatures and shortday conditions had lower temperature preferences and a decreased mortality after changing environmental conditions. It can therefore be assumed that overwintering D. suzukii can spread better in spring due to a lower temperature preference and a higher physical activity under cold environmental conditions than flies without adaptation to winter conditions. Bait traps were also used to determine the developmental status of the ovaries by dissecting the abdomens of weekly captured D. suzukii. This enabled a correlation between microclimatic conditions of individual habitats and the reproductive status of females to be established. In winter, the majority of female D. suzukii had “immature ovaries”, whereas in the summer most females had “mature eggs” in their abdomen. For this reason, it can be assumed that D. suzukii entered a reproductive diapause, which is apparently influenced by winter climatic conditions, nutritional status and the availability of food. In addition, it was found that the developmental status of ovaries correlates positively with oviposition. Laboratory tests were carried out to determine the highest number of egg depositions at 20 °C. Most females with “mature eggs” were also documented under these simulated conditions. We detected that the preferred surface temperature for egg depositing was very similar to the preferred ambient temperature of D. suzukii. Most of the eggs were deposited on fruits with a surface temperature of 22 °C. At this temperature, the highest net reproductive rate and intrinsic rate of population increase was found, too. Temperatures below 15 °C and above 35 °C were not preferred, which represented the thresholds for a successful development of D. suzukii. Temperatures between 10 and 15 °C and shortday conditions were the most important key stimuli for entering the reproductive diapause. Therefore, temperature had a stronger influence on oviposition behaviour than daylength. A complete disruption of diapause occurred at higher temperatures (20 °C) and longday conditions after 72 hours. The data presented in this work on the possibility of adapting D. suzukii to environmental conditions and key temperatures, which influence the development of ovaries and egg deposition, can provide an important contribution to the development of prediction and population dynamics models and can be used for long-term control strategies against D. suzukii. According to current knowledge and observations, overwintering is obviously a critical period for the survival of the populations. Therefore, the characterisation and identification of additional hibernation sites is of great importance. There, a targeted and environmentally friendly control of D. suzukii populations could be particularly efficient.