Browsing by Subject "Essential oils"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Investigations into heat- and light-induced terpene modifications in essential oils(2023) Bitterling, Hannes; Vetter, WalterEssential oils belong to secondary plant metabolites, with terpenoids and phenylpropanoids being among the main constituents in terms of quantity. Due to their lipophilic character and high volatility, they are mainly obtained by steam distillation. Citrus essential oils (agrumen oils) are an exception , since they are usually extracted from the peels by means of pressing, whereby less volatile components such as coumarins and furocoumarins are also introduced. Due to their odor and taste-giving properties, essential oils are used in the food, beverage, and cosmetics industries. In addition, due to a wide range of pharmacological properties, they are used in phytotherapy as well as in aromatherapy. However, most essential oils are highly susceptible to oxidation, polymerization, dehydrogenation, and isomerization reactions in the presence of atmospheric oxygen, light, and at high temperatures. The resulting organoleptic changes usually lead to a significant quality reduction. The formation of terpene hydroperoxides is another problem, as these are suspected of causing intolerances such as redness and itching in 1-3% of the European population upon contact with the skin. The detection of these chemical changes forms an integral part of quality control and can be prevented as far as possible by suitable production, transport, and storage strategies. Due to their volatility, essential oils are mainly analyzed by gas chromatography. However, due to their instability, the detection of hydroperoxides places considerable demands on common analytical methods. For this reason, a novel spectrophotometric method for the detection of peroxides and hydroperoxides in terpenes and essential oils was developed (paper 1). The oxidation of N-N-dimethyl-p-phenylenediamine by peroxides yielding an intensely red-colored cation (Wursters red) allowed colorimetric detection and quantitation of even smallest amounts (LOD: 0.5 ppm). The minimal sample amount of only a few milligrams, as well as simple and fast performance predestine this method for daily laboratory routine (paper 1). Among plant terpenoids, the monoterpene R-(+)-limonene is very widespread. Thus, it is not only found in citrus oils but also of in caraway oil, where its proportion amounts to almost 50%. To investigate the storage stability, R-(+)-limonene, S-(+)-carvone, different caraway oils, and the corresponding caraway seeds were stored in desiccators at 25 °C and 40 °C for eighteen months (paper 2). The samples were analyzed monthly by GC/MS and GC/FID, as well as HPLC/DAD-MS/MS. This showed that the comparison of seed, isolated essential oil, and pure substance, whichhad not been considered in storage studies so far, was of extraordinary importance. Here, both the plant matrix and the essential oil had a protective effect on individual terpenes and delayed their degradation (paper 2). Further, a clear difference between photo-oxidation and autoxidation was observed. Light-induced oxidation of terpenes primarily resulted in the formation of hydroperoxides, whereas autoxidation led to a variety of compounds such as alcohols, ketones, and epoxides. Thus, the secondary products can serve as specific markers for conclusions about the preload and quality of essential oils. In the study presented in paper 3, further photo-oxidation experiments were conducted with beta-pinene, R-(+)-limonene, and gamma-terpinene, with added furocoumarins. Furocoumarins can absorb UV-A light in the range of 320 – 380 nm and enter an energetically excited state. This energy difference between the ground state and excited state can be dissipated again by the emission of fluorescent and phosphorescent light. In this process, short-wave energy-rich UV light is converted into lower-energy visible light (bathochromic shift). For this reason, the UV light-induced degradation of the terpenes beta-pinene, R-(+)-limonene, and gamma-terpinene could be significantly reduced by adding 5% each of xanthotoxin, bergapten, bergaptol, and bergamottin. The effect of adding bergaptol was most pronounced in the photooxidation of gamma-terpinene (paper 3). Consequently, in citrus essential oils from which the natural furocoumarins had been previously removed, irradiation with UV light resulted in a strong degradation of the terpenes. This process could be markedly reduced by the re-addition of 5% of the previously removed plant-specific furocoumarins (paper 4). In summary, it can be concluded that not only the plant matrix and the essential oil as a multicomponent mixture but also potential interactions with other substances forming part of the essential oil such as furocoumarins may significantly slow down the oxidation of terpenoids.