Browsing by Subject "Evolution"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Adaptation of model organisms and environmental bacilli to glyphosate gives insight to species-specific peculiarities of the shikimate pathway(2024) Schwedt, Inge; Commichau, Fabian M.Glyphosate (GS), the active ingredient of the popular herbicide Roundup, inhibits the 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase of the shikimate pathway, which is present in archaea, bacteria, Apicomplexa, algae, fungi, and plants. In these organisms, the shikimate pathway is essential for de novo synthesis of aromatic amino acids, folates, quinones and other metabolites. Therefore, the GS-dependent inhibition of the EPSP synthase results in cell death. Previously, it has been observed that isolates of the soil bacteria Burkholderia anthina and Burkholderia cenocepacia are resistant to high amounts of GS. In the framework of this PhD thesis, it could be demonstrated that B. anthina isolates are not intrinsically resistant to GS. However, B. anthina rapidly adapts to the herbicide at the genome level and the characterization of GS-resistant suppressor mutants led to the discovery of a novel GS resistance mechanism. In B. anthina, the acquisition of loss-of-function mutations in the ppsR gene increases GS resistance. The ppsR gene encodes a regulator of the phosphoenolpyruvate (PEP) synthetase PpsA. In the absence of a functional PpsR protein, the bacteria synthesize more PEP, which competes with GS for binding in the active site of the EPSP synthase, increasing GS resistance. The EPSP synthase in B. anthina probably does not allow changes in the amino acid sequence as it is the case in other organisms. Indeed, the Gram-negative model organism Escherichia coli evolves GS resistance by the acquisition of mutations that either reduce the sensitivity of the EPSP synthase or increase the cellular concentration of the enzyme. Unlike E. coli, the EPSP synthase is also critical for the viability of Gram-positive model bacterium Bacillus subtilis. This observation is surprising because the enzyme belongs to the class of GS-insensitive EPSP synthases. In fact, the EPSP synthase is essential for growth of B. subtilis. The determination of the nutritional requirements allowing the growth of B. subtilis and E. coli mutants lacking EPSP synthase activity revealed that the demand for shikimate pathway intermediates is higher in the former organism. This finding explains why laboratory as well as environmental Bacilli exclusively adapt to GS by the mutational inactivation of glutamate transporter genes. Here, it was also shown that a B. subtilis mutant lacking EPSP synthase activity grows in minimal medium only when additional mutations accumulate in genes involved in the regulation of aerobic/anaerobic metabolism and central carbon metabolism. The characterization of these additional mutants will help to elucidate the peculiarities of the shikimate pathway in B. subtilis. Moreover, the mutants could be useful to identify the aromatic amino acid transporters that still await their discovery.Publication Elucidating the megadiversity of Chalcidoidea (Hymenoptera) with a multi-taxonomic approach(2022) Haas, Michael; Krogmann, LarsWith over 22,500 described and up to 500,000 estimated species, the jewel wasps (Chalcidoidea: Hymenoptera) are among the most species-rich insect lineages. Their evolutionary success is tightly linked to their parasitoid biology, having evolved to utilize a wide array of different arthropod hosts. Additionally, secondary phytophagy evolved several times within this superfamily. Although new approaches are employed in integrative taxonomic research, progress to decipher the megadiversity of this taxon, including their evolution, is still limited. With this work, the diversity of the superfamily is studied at two evolutionary key points in time. The evolutionary origin of Chalcidoidea is investigated in the Cretaceous and the resulting diversity since then is examined in the present. Different systematic levels will be elucidated with the help of integrative taxonomic methods. In the first chapter, the fossil origins of jewel wasps are addressed, around the middle of the Cretaceous period 110 million years ago. The morphology of a putative early chalcidoid specimen is studied, as it is highly informative for chalcidoid evolution due to its age. Based on those results, its phylogenetic placement is critically examined. The specimen is assumed to be one of the oldest described chalcidoid fossils, Parviformosus wohlrabeae Barling et al., 2013. It is a key fossil because of its age and putative assignment to the polyphyletic family Pteromalidae and could therefore be a valuable voucher for dating modern phylogenies. A precise redescription of the fossil was conducted and its morphology and phylogenetic position was discussed. No synapomorphic characters could be identified, warranting an inclusion in an already established chalcidoid family. In fact, none of the autapomorphies for Chalcidoidea could be recognized, necessitating a revised systematic placement in the Proctotrupomorpha. In the second chapter, several fossils in amber are described that grant insights in the early evolution of Chalcidoidea and the morphological diversity of Cretaceous lineages. Morphological characters are studied to answer the question of plesiomorphic character states in Chalcidoidea, aiding to understand their early evolution. The phylogenetic placement of these fossils is discussed, to provide hypotheses on the diversification of the superfamily, which so far has only few fossil representatives described from this time. Four fossils are made scientifically available that were found in 99 million year old Burmese amber. Those specimens are described in a new, extinct family, the Diversinitidae. This family exhibits a unique combination of plesiomorphic characters, not present in any other chalcidoid taxon, but lacks apomorphic characters. In total, three new genera and three new species are delimited and described. Phylogenetically relevant characters like the fully developed funicular segments, possessing multiporous plate sensilla, or the peg like cerci that improve our understanding of the early evolution of Chalcidoidea, are discussed based on the newly established family. A phylogenetic analysis based on morphological characters was performed. This analysis supported the monophyly of Diversinitidae, but left its exact systematic position within Chalcidoidea open. In the third chapter the focus shifts from the early evolution of Chalcidoidea towards the extant fauna, representing the diversity evolved since the Cretaceous. Exemplary, in the speciose family Pteromalidae the unknown diversity is examined to better understand the undiscovered species richness of parasitoid wasps. DNA barcoding is used to record and help identify previously unknown genera and species in Germany. Compared to the already known pteromalid fauna, 17 genera and 41 species are added as new records for Germany and the males of two species are described anew. The identified DNA barcodes were made available to enable the genetic identification of those species that have a high potential as indicators for nature conservation efforts due to their high host specificity. In the fourth chapter, the pertinent problem of cryptic diversity in Chalcidoidea is investigated. Via an extensive integrative taxonomic approach, the morphological species hypothesis is tested for one of the most abundant pteromalid species in Europe, Spintherus dubius. In this example, the benefit of combining different methods for species discovery and delimitation is highlighted. Genetic analyses of S. dubius reveal discrepancies between the morphological species concept and molecular data, indicating two potential species instead of one. The usage of an advanced morphological method, the multivariate ratio analysis, results in a confirmation of the molecular results, also exposing distinctive morphological characters per taxonomic unit. The examination of the host spectrum through rearing experiments further substantiates these findings, by revealing different host parasitoid affiliations. Altogether, this thesis showed that it is necessary to combine methods and examine different evolutionary points in time, to better understand the diversity of parasitoid lineages. Fossil taxa are important study subjects to examine the character evolution of any taxon, laying the base for phylogenetic research. The study of Diversinitidae highlights the plasticity of character states in Chalcidoidea, also providing evidence for plesiomorphic states. Their encompassing description and the redescription of P. wohlrabeae allow their incorporation into phylogenetic studies, to serve as solid anchor points in dating lineages and morphological evolution on the way towards extant diversity. Examining the extant fauna of Pteromalidae revealed the amount of diversity of species, for which the biology is often unknown. It is shown that molecular methods aid in the discovery of this diversity, opening possibilities for further research. It is affirmed that hidden diversity is even pertinent in abundant, well known species, with S. dubius being an example of cryptic diversity unveiled by integrative taxonomy.