Browsing by Subject "Expression"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Bioinformatische Analyse und funktionelle Charakterisierung von strukturellen Genvarianten in ADME-Genen in humaner Leber(2016) Tremmel, Roman; Zanger, Ulrich M.Pharmacogenetics is the study about inter-individual genetic variation that influences the response to drugs and other xenobiotics. A major part of this variation is due to hepatic drug metabolism with enzymes, transporters and receptors involved in the ab-sorption, distribution, metabolism and the excretion of drugs, xenobiotics and endoge-nous substances and collectively defined as ADME-genes. Genetic factors along with environmental and endogenous factors, including gender, age, inflammation processes and others are known to influence the expression and activity of ADME-genes. These influences can affect drug response, side effects or toxicity. According to newly published data, the human genome of any subject differs from a reference genome at 4.1 to 5.0 million positions. More than 99.9% of these differences are single nucleotide polymorphisms (SNP) or short insertions or deletions. Further-more, a person carries up to 2,500 structural variants, including copy number variations (CNV) affecting ~20 million bases (1000 Genomes Project Consortium et al., 2015). Thus structural variants affect more bases than SNPs. Per definition the CNVs are du-plicated or deleted DNA segments greater than 1kb and it was shown that they cover at least 12-30% of the human genome. Genome-wide studies investigating the function-ality of CNVs in the fruit fly, the mouse and in humans showed that there are genes whose expression is clearly affected by CNVs (dosage-sensitve), but also genes show-ing lower expression with increased copy number (dosage reversed) or genes without any expression alterations despite different copy number (dosage-insensitive). A prominent example of CNVs influencing drug metabolism is the phase I gene CYP2D6. Carriers of reduced or amplified gene copies show significantly altered ex-pression and enzyme activity levels and also a different drug metabolism of substrates like codeine (opioid) or tamoxifen (selective estrogen receptor antagonist) in compari-son to carriers with normal copy status of two. Genotyping of CYP2D6 gene copy num-ber may thus help to adjust drug dosage in a genotype dependent manner. In this work I investigated if further ADME-genes are affected by CNVs and if these variants have a functional impact on the expression phenotype and drug metabolism. The distribution of CNVs in the most important ADME-genes (n=340) was investigated in three independent cohorts using CNV data in a public accessible database of ge-nomic variants (DGV; dgv.tcag.ca), processed SNP microarray data of paired samples of healthy (n=269) and tumor (n=351) liver tissue of the TCGA project (http://cancergenome.nih.gov/) and ADME-panel based exon next generation sequenc-ing (NGS) applied on 150 well documented human liver samples of an in-house cohort (IKP148). For the NGS data analysis a method was developed and optimized to esti-mate the relative copy number of the ADME genes or every single exon via the read depth. The results were validated using qPCR with specific TaqMan assays. RNA-sequencing data of 50 healthy TCGA liver samples, and normalised expression data from microarray experiments applied to lymphoblastoid cell lines (LCL) from the HapMap samples and the 150 human liver samples (IKP148) were used to analyse the association between CNVs and the mRNA expression. Furthermore, in the IKP148 liver samples protein and enzymatic activity levels were available or measured using West-ernBlot and mass spectrometry for selected ADME-genes. All pharmacologically important CNVs of phase I and phase II genes, including CYP2A6, CYP2D6, GSTM1, GSTT1, SULT1A1 and UGT2B17 could be confirmed in all datasets. CNVs which were known, but so far not functionally assessed were found in the phase I and II genes CES1, CYP2E1, CYP21A2, UGT2B15 and UGT2B28. In this work rare CNVs (<1%) were mainly found for transporters like ABCA2, SLC2A4 and SLC47A1. The analysis of the read depth in the IKP148 samples data revealed hybrid genes for CYP2A6 and CYP2D6 with their pseudogenes and allowed a fine mapping of the different alleles. The functional analysis further confirmed the positive association between CNVs and the mRNA expression of CYP2A6, CYP2D6, GSTM1, GSTT1, SULT1A1 and UGT2B17 in all three cohorts. The combination of all data from the NGS project in the IKP148 liver subjects, including SNP and CNV genotypes showed that 11% and 53% of the variability of CYP2A6 and CYP2D6 enzyme activity were explained by the genetic factors. In contrast the mRNA expression of the genes CES1 and CYP2E1 was not dependent of the CNV pattern in healthy liver tissue (IKP148 and TCGA) and lymphoblastoid cell lines. A detailed analysis of the protein and enzyme activity levels (chlorzoxazone-6-hydroxylation) of CYP2E1 confirmed the dosage-insensitivity in the IKP148 liver sub-jects. The dosage compensation can be principally explained by different mechanisms and could be tissue or tumor specific. Furthermore, CNV-linked genetic variants, altered miRNA regulation, incomplete inclusion of regulatory elements or coding sequences, hybridgenes, monoallelic expression, feedback loops or epigenetics could be factors which mask the CNV effect. In this work a haplotype analysis of the CYP2E1 region identified SNPs which were linked to the duplication and a reduced expression phenotype in persons with European ancestry. Using in silico prediction tools we found a relation of one of the linked SNPs in the 3’UTR with additional predicted miRNA bind-ing sites potentially regulating additional CYP2E1 gene copies. The CNV influence on the mRNA expression of the genes CYP21A2, UGT2B25 and UGT2B28 was inconsistent. Although CYP21A2 deletions were associated with a de-creased expression, gene duplications showed normal expression levels compared to samples with two copies. A significant influence of UGT2B28 CNVs was found in LCLs but not in human liver samples (IKP148 and TCGA). In total 7 of 17, 2 of 12 and 3 of 14 ADME genes showed a significant association between expression and CNV type in the IKP148, TCGA and LCLs of the HapMap samples, respectively. In the TCGA cancer tissue nearly all ADME-genes carry CNVs and in 30% of the genes a significant correlation was observed. With cooperation partners further polymorphisms and phenotypes of SULT1A1 and CYP2E1 were analyzed. CYP2E1: In this part of the thesis factors influencing the risk of developing differentiat-ed thyroid carcinoma (DTC) were investigated. Known risk factors for the progression of DTC are genetic and environmental factors, including ionizing radiations, previous thyroid diseases, and hormone factors. It has been speculated that dietary acrylamide intake correlates with the DTC formation. The acrylamide molecule is metabolized by CYP2E1 to the reactive carcinogenic glycidamide. The enzymatic reaction is probably dependent on the CYP2E1 genotype. Together with a cooperation partner (Prof. Dr. Landi, University of Pisa, Pisa, Italy) we investigated, whether CYP2E1 variants influ-ence the DTC risk. Prof. Landi and colleagues used a case-control-cohort and a haplo-type approach and observed a significant association between a tag-SNP rs2480258 (A allele), which covers variants in intron eight and the 3’UTR, and an increased DTC risk. In the human liver samples (IKP148) the rs2480258 genotypes were assessed using an imputation analysis and it was shown that particularly the A allele of the SNP reduce significantly the mRNA and protein expression and the enzyme activity. An in silico prediction for the molecular mechanism suggested that miR570 specifically down regulates the transcripts in carriers of the A allele. These results indicated that the inter-individual CYP2E1 activity as well as acrylamide (similar to glycidamide) influences the risk for DTC. SULT1A1: Methyleugenol, a secondary metabolite present in herbs such as basil or laurel is metabolized in humans by sulfation to a reactive product which can covalently bind to DNA. The resulting DNA adducts are mutagenic and can promote carcinogene-sis. Our cooperation partner Prof. Dr. Hans-Rudolf Glatt (German Institute for Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany) had shown, that the meth-yleugenol metabolism takes place in the liver of mice and is mainly catalyzed by the phase II enzyme SULT1A1. To investigate these facts in humans, the methyleugenol DNA-adduct levels were measured by the cooperation partner in liver tissues (n=121; IKP148) using mass spectrometry. In this work the SULT1A1 protein levels were de-termined using western blot analysis and the relation between the DNA adducts as well as the SULT1A1 expression and the SULT1A1 CNVs was assessed. The SULT1A1 mRNA and protein expression were significantly correlated to the DNA adducts, e.g. higher SULT1A1 expression resulted in higher adduct levels. This emphasized the role of SULT1A1 in the in vivo metabolism in human liver samples. As mentioned above, there were individuals (IKP148) carrying one, two, three, four and five copies of SULT1A1. Deletions were found less frequent (4%) than duplications (36%). The CNVs were significantly associated with the SULT1A1 mRNA and protein expression. This result was consistent to previous studies investigating the association between SULT1A1 CNVs and enzyme activity. The methyleugenol DNA adduct levels were also significantly associated to the SULT1A1 copy number. Carriers of at least three gene copies exhibited a 2.8-fold higher DNA adduct level compared to donors carrying only one SULT1A1 gene copy. As a consequence this could mean that individuals with mul-tiple SULT1A1 copies reach faster, more often and more easily critical and ultimate adduct levels which increase the risk for developing cancer. Future studies should clari-fy whether methyleugenol intake as well as the individual SULT1A1 CNV make-up in-fluences the risk of cancer.Publication Food-grade Lactobacilli expression systems for recombinant enzymes(2013) Böhmer, Nico; Fischer, LutzLactobacilli are Gram-positive bacteria used throughout the food industry as traditional starters for various fermented foods. Lactobacilli would be superior for recombinant enzyme production regarding the food safety demands since most of them are Generally Recognised As Safe (GRAS) organisms. The major advantages of Lactobacilli as food-associated microorganisms used for recombinant enzyme production are their safe and sustainable use as overall safety food-grade expression systems. In the work presented, Lactobacilli were studied in detail as food-grade expression systems for recombinant enzyme production. In a first analysis, the two pSIP expression systems, pSIP403 and pSIP409, were investigated to produce a hyper-thermophilic Beta-glycosidase (CelB) from Pyrococcus furiosus in Lactobacillus plantarum NC8 and Lactobacillus casei as hosts, respectively. Both Lactobacilli harbouring the pSIP409-celB vector produced active CelB in batch bioreactor cultivations, while the specific CelB activity of the cell-free extract was about 44% higher with Lb. plantarum (1,590 ± 90 nkatpNPGal/mgprotein) than with Lb. casei (1,070 ± 66 nkatpNPGal/mgprotein). A fed-batch bioreactor cultivation of Lb. plantarum NC8 pSIP409-celB resulted in a specific CelB activity of 2,500 ± 120 nkatpNPGal/mgprotein. A basal whey medium with supplements was developed as an alternative to the cost intensive MRS medium used. About 556 ± 29 nkat pNPGal/mgprotein of CelB activity was achieved in bioreactor cultivations using this medium. It was shown that both Lactobacilli were potential expression hosts for recombinant enzyme production. An additional approach was performed to produce a metagenome-beta-galactosidase using Lb. plantarum NC8 with the pSIP expression system. Using this system, a quite low maximal galactosidase activity of only 0.18 nkatoNPGal/mgprotein was detected. A 13 times higher activity of 2.42 nkatoNPGal/mgprotein was produced after the knock out of the interfering native Kluyveromyces lactis Beta-galactosidase in the well-known food-grade K. lactis pKLAC2 expression system. Nevertheless, the best performing expression system for the recombinant production of the metagenome-derived enzyme was the Escherichia coli BL21 strain with a pET vector, resulting in the highest Beta-galactosidase of 82.01 nkatoNPGal/mgprotein. Beside the use of the pSIP expression system, a novel expression system for Lb. plantarum was developed. This system is based on the manganese starvation-inducible promoter from the specific manganese transporter of Lb. plantarum NC8 which was cloned for the first time. The expression of CelB was achieved by cultivating Lb. plantarum NC8 at low manganese concentrations with MRS medium and the pmntH2-celB expression vector. A CelB activity of 8.52 µkatoNPGal/L was produced in a bioreactor. The advantages of the novel expression system are that no addition of an external inducing agent was required, and additionally, no further introduction of regulatory genes was necessary. The new promoter meets the general demands of food-grade expression systems. The glutamic acid racemase of Lb. plantarum NC8 was cloned and characterized in this work for the first time as a possible target for a food-grade selection system for this species. Glutamic acid racemases (MurI, E.C. 5.1.1.3) catalyse the racemisation of L- and D-glutamic acid. MurIs are essential enzymes for bacterial cell wall synthesis, which requires D-glutamic acid as an indispensable building block. Therefore, these enzymes are suitable targets for antimicrobial drugs as well as for the potential design of auxotrophic selection markers. A high expression system in E. coli BL21 was constructed to produce and characterize the biochemical properties of the MurI from Lb. plantarum NC8. The recombinant, tag-free Murl was purified by an innovative affinity chromatography method using L-glutamic acid as the relevant docking group, followed by an anion exchange chromatography step (purification factor 9.2, yield 11%). This two-step purification strategy resulted in a Murl sample with a specific activity of 34.06 µkatD-Glu/mgprotein, comprising a single protein band in SDS-PAGE. The purified Murl was used for biochemical characterization to gain in-depth knowledge about this enzyme. Only D- and L-glutamic acid were recognised as substrates for the Murl with similar kcat/Km ratios of 3.6 sec-1/mM for each enantiomer. The findings in this study may contribute to further development and implementation of food-grade Lactobacilli expression systems for recombinant enzyme production. Furthermore, the results obtained may help to optimise and select hosts and expression systems for industrial enzyme production for the needs of the food industry.