Browsing by Subject "Fruchtfolge"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Publication Comparative performance of annual and perennial energy cropping systems under different management regimes(2007) Böhmel, Ute Constanze; Claupein, WilhelmThe theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The target was set to supply high quality biomass for existent and currently developing modern conversion technologies. Renewable energy production is thought to be environmentally benign and socially acceptable. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields at the study site, may better perform on marginal sites. Switchgrass is an example of the need to grow site-adapted energy crops. The annual energy crop maize required the highest input, but at the same time yielded the most. The two crop rotation systems did not differ in yield and energy input, but the system with no-till may be more environmentally benign as it has the potential to sequester carbon. The objective of Paper II was the optimization of crop cultivation through the differentiation of input parameters to enhance the quality of the energy crop triticale, without influencing the biomass yield. The intention was to minimize the content of combustion-disturbing elements (potassium and chlorine) and the ash residue of both aboveground plant parts (grain and straw). It was done through different straw and potassium fertilizer treatments. It could be shown that the removal of straw from the previously cultivated crop and no additional potassium fertilizer could reduce the amount of combustion-disturbing elements. A high influence must also be expected from site and weather conditions. Papers III to V address the supply of different high quality biomasses, with the focus on maize for anaerobic digestion. The objective of Paper III was the assessment of the requirements of biogas plants and biomass for anaerobic digestion. It introduces potential energy crops, along with their advantages and disadvantages. Alongside maize, many other biomass types, which are preserved as silage and are high in carbohydrates and low in lignocelluloses, can be anaerobically digested. The development of potential site-specific crop rotation systems for biomass production are discussed. The objective of Papers IV and V was the identification of suitable biomass and production systems for the anaerobic digestion. The focus lay on the determination of (i) suitable energy maize varieties for Central Europe, (ii) optimal growth periods of energy crops, (iii) the influence of crop management on quality parameters and (iv) environmentally benign crop rotation systems. Differently maturing maize varieties were grown in six different crop rotation systems (continuous maize with and without an undersown grass, maize as a main crop partially preceded by different winter catch crops and followed by winter wheat) and tested at two sites. Additional factors were sowing and/or harvest dates. Maize and cumulative biomass yields of the crop rotation systems were compared. Specific methane yield measurements were carried out to evaluate the energy performance of the tested crops. Quality was assessed either by measurements of the dry matter content or by using the near infrared reflectance spectroscopy for the determination of chemical composition. Results indicate that an environmentally benign crop rotation system requires nearly year-round soil cover to minimize nitrogen leaching. This can be achieved through the cultivation of undersown or catch crops and additional main crops alongside maize, such as winter wheat. Late maturing maize varieties can be cultivated at a site where the maize can build adequate dry matter contents due to a long growth period (late harvest date). The energy generation in terms of methane production was primarily dependent on high biomass yields. It could be further shown that the specific methane yield of maize increased with increasing starch content, digestibility and decreasing fiber content. To conclude, selected site-specific energy crops and crop rotation systems, with suitable crop management, (fertilizer and soil tillage) can produce high quality biomass and the highest net energy return. Lignocellulosic biomass can be optimized for combustion. Wet biomass is an optimal substrate for anaerobic digestion. Profitable energy production is characterized by a high land and energy use efficiency and especially high net energy yields.Publication Cover cropping in integrated weed management(2018) Sturm, Dominic; Gerhards, RolandWeed control constitutes a major challenge in the worldwide crop production. Beside chemical and mechanical weed control strategies, cover cropping provides an effective way of biological weed suppression. Five different field experiments were conducted at six locations from 2014-2016 to evaluate the weed control efficacy of different cover crops in mono and mixed cultivation combined with different fertilization strategies and sowing dates. Furthermore weed suppressing effects of cover crop mulches in spring and of living mulches in summer were investigated. Potential effects on sugar beet emergence, quality and quantity were also assessed. In three laboratory and two greenhouse experiments from 2015-2017, the proportional contribution of competitive and biochemical effects on the overall weed suppression and the identification of varying susceptibilities of different weeds against biochemical stresses were at the center of research. In field experiments, the weed suppressive effects of cover crops and living mulches in mono and mixed cultivation were tested. The experiments emphasized the importance of cover crop and living mulch mixtures compared to mono cropping due to a higher flexibility to biotic and abiotic stresses. This was followed by a more constant biomass production and more effective weed suppression. Moreover, the observed weed control was a result of competitive and biochemical effects, induced by cover crops. These were later on analyzed for active weed growth suppressing compounds. Altering cover crop sowing date and fertilization to optimize the weed control resulted in significant changes of cover crop and weed biomass. Early cover crop sowing five or three weeks before winter wheat harvest increased the weed control efficacy in one year, significantly. Due to contrary results over the two experimental years, we suggest that the cover crop biomass and consequently the weed suppressive ability depends on sufficient soil water for rapid cover crop germination and growth. The use of cover crop mulch in sugar beet crops provided a weed suppression of up to 83%. Especially mulch derived from cover crop mixtures reduced the weed density (56%) more effectively compared to mono cultivated cover crops (31%). The inclusion of cover crops, mulches and living mulches can lead to significant herbicide reductions in the main crop. However supplementary mechanical or chemical weed control strategies are still necessary, especially in crops with a low competitive ability like sugar beets. Nevertheless, novel mechanical weed control approaches and adequate herbicide application techniques, as band-spraying, can reduce the herbicide input in the long-term. Germination tests with aqueous cover crop extracts were conducted on weed seeds to evaluate differences in the inhibition of germination and root growth. Furthermore, different sensitivities of the weeds against the different cover crop extracts were revealed. Some cover crops as S. alba, F. esculentum, H. annuus, T. subterraneum and L. usitatissimum showed the most effective weed suppression. Moreover, the weed M. chamomilla showed the highest susceptibility against biochemical stresses in the germination tests. A strong positive correlation between the weed suppressive effects by the extracts and the field weed suppression was found. This indicated that biochemical effects play also an important role on the overall weed suppression in the field. To estimate the proportions of competitive and biochemical effects on the overall weed suppression by cover crops, greenhouse experiments with active carbon supplemented soil were conducted. These experiments revealed that biochemical effects, by the presence of active carbon in the soil, shifted the balance of competition between cover crops and weeds. In the course of the experiments, we also found species-specific effects on the donor as well as on the receiver side. The results of this thesis demonstrate the diverse use of cover crops, their mulches and living mulches in agricultural systems. This work aims on the optimization of biological weed control strategies and indicates approaches for future research. It is for example not yet clear how cover crops suppress specific weeds and if it is possible to design combinations of specific cover crops for the suppression of individual weed communities. Additionally, these results help to reduce long-term herbicide inputs in agricultural systems.Publication Evaluating different management strategies to increase the effectiveness of winter cover crops as an integrated weed management measure(2020) Schappert, Alexandra; Gerhards, RolandWeed control in agricultural production systems is indispensable to achieve stable crop yields. Integrated cropping systems are demanding for preventive and ecologically harmless weed control measures in order to protect soil and water resources and to retard the selection of herbicide-resistant weeds. Well-established winter cover crops provide nutrient retention and soil protection and may effectively suppress weeds. This contributes to reduce chemical and mechanical fall- and spring-applied weed control practices. However, producers are cautious towards integrating cover crops in crop rotations, as their performance is related to environmental conditions and varies, therefore, significantly from season to season. To increase their integration into cropping systems, reliability on weed control by cover crops needs to improve. In the current study, management strategies such as i) the cover crop sowing method, ii) the selection of water deficit tolerating cover crop species, iii) cover crop species combinations, iv) the adjustment of the mulching date and v) tillage practices after cover crop cultivation were considered as possibilities to improve the effectiveness of cover crops to control weeds during cultivation and in the subsequent cash crop. Within the first and the second publication, the general weed and A. myosuroides control ability of a cover crops mixture during and after cultivation were compared in the field with various fall-applied tillage methods and glyphosate treatments. Due to the development of highly competitive cover crop stands, weeds were suppressed by 98% and A. myosuroides by 100% during cultivation. Therefore, cover crops were more efficient compared to glyphosate application(s), non-inversion and inversion tillage and revealed a great potential to reduce or even replace chemical and mechanical fall-applied weed control measures. The efficient A. myosuroides control during the cover crop cultivation remained until spring barley harvest. This quantifies cover crops to complement herbicide resistance management strategies. In contrast, due to the weak cover crop performance during fall-to-winter within another two experiments included in the second article, weed suppressive effects of cover crops disappeared after the cultivation of cover crops. This might have been the reason why reduced tillage and adjusted mulching dates in spring failed in contributing to expand weed suppressive effects of cover crops in these experiments. Cover crop mixtures are attributed to show a greater resilience against unfavorable conditions than pure cover crop stands which is expected to result in an increased weed suppression ability. Within article three, the weed control efficacy of pure cover crop stands was compared with species mixtures. Pure stands of Avena strigosa Schreb. and Raphanus sativus var. oleiformis Pers. provided the most efficient weed control with 83% and 72%, respectively. Cover crop species mixtures showed a weaker weed suppression ability than the most efficient pure stand. In order to improve the weed control ability of cover crop mixtures, it was evaluated that the species selection is more relevant than the species diversity. Thereby, environmental requirements, such as water and temperature demand, and weed suppression mechanisms should be considered. Weed suppression of mixtures was improved by increasing the proportions of A. strigosa and R. sativus var. oleiformis, as they were showing a susceptibility for dry conditions and combine a strong competition for resources and allelopathic interference with weeds. Within the fourth article, it was explored whether a low susceptibility of single cover crop species to water-limitations accompanies an improved weed suppression ability. A. strigosa and Sinapis alba L. showed differing suitabilities to cope with water-deficit in the greenhouse. A relation between weed suppression and water demand of cover crops at the field was not identified. Although the weed control ability of cover crops is generally narrowed under water-limited conditions, the weed suppression potential of individual species seems to be independent of their water supply. The adjustment of the cover crop sowing method, the consideration of species-specific requirements and the mixing strategies, were evaluated as being important to improve the resilience of cover crops against severe environmental conditions and their weed control ability. Investigations of cover crop mixtures with respect to single component species, their mixing ratios and seed densities, might further increase the absolute and average effectiveness of cover crops as an integrated weed management practice.Publication Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems(2019) Hallama, Moritz; Pekrun, Carola; Lambers, Hans; Kandeler, EllenBackground Phosphorus (P) is a limiting nutrient in many agroecosystems and costly fertilizer inputs can cause negative environmental impacts. Cover crops constitute a promising management option for sustainable intensification of agriculture. However, their interactions with the soil microbial community, which is a key driver of P cycling, and their effects on the following crop, have not yet been systematically assessed. Scope We conducted a meta-analysis of published field studies on cover crops and P cycling, focusing on plant-microbe interactions. Conclusions We describe several distinct, simultaneous mechanisms of P benefits for the main crop. Decomposition dynamics, governed by P concentration, are critical for the transfer of P from cover crop residues to the main crop. Cover crops may enhance the soil microbial community by providing a legacy of increased mycorrhizal abundance, microbial biomass P, and phosphatase activity. Cover crops are generally most effective in systems low in available P, and may access ‘unavailable’ P pools. However, their effects on P availability are difficult to detect by standard soil P tests, except for increases after the use of Lupinus sp. Agricultural management (i.e. cover crop species selection, tillage, fertilization) can improve cover crop effects. In summary, cover cropping has the potential to tighten nutrient cycling in agricultural systems under different conditions, increasing crop P nutrition and yield.Publication Integrated weed management in a pesticide free area(2023) Saile, Marcus; Gerhards, RolandWeed control is a challenging task for farmers in highly specialized crop production systems. The competition of weeds for light, nutrients and water causes significant yield losses. Chemical weed control is still the standard method in European cropping systems. Due to their high selectivity and efficacy against a wide range of weed species, herbicides provide the most efficient weed control in most crops. However, negative impact of herbicides on the environment, loss of biodiversity, possible risks to consumers due to residues in food chain and the increase and spread of herbicide-resistant species force farmers to reduce herbicide use and call for alternative weed control methods. Mechanical weed control methods including hoeing and harrowing represent the most promising alternative direct weed control methods. Weed control costs for mechanical methods are still higher than for herbicides and weed control efficacy is often lower with less than 80 % compared to around 95 % for herbicides. The efficacy of mechanical weed control is dependent on external factors such as soil water content, soil texture, and weed species diversity in the particular field. Herbicides can therefore not be replaced by a single mechanical weed control method. It needs an Integrated Weed Management (IWM) strategy including preventive and direct methods of weed suppression. In this study, IWM were investigated for typical arable farming systems in Southwestern Germany. Studies for this thesis were conducted from 2017 to 2022. The objectives of the thesis were to combine preventive and curative methods of weed control in diverse cropping systems and to improve mechanical weed control methods by precision farming technologies. The results of the thesis have been published in five papers. The first article addressed the effects of preventive weed control by stubble tillage, cover cropping, and the use of glyphosate treatments against Alopecurus myosuroides and volunteer cereals. In two field trials at two sites, cover crop mixtures achieved equal weed control efficacy of up to 100 % as the dual glyphosate treatment. Stubble tillage practices resulted in lower control but caused the highest energy consumption. The second article focused on the effect of two seeding dates (early-, delayed-sowing) and different herbicide strategies on A. myosuroides control on winter cereals. This study was conducted over three years at three locations. Delayed sowing reduced weed emergence by 30-40 %. Delayed sowing in combination with the pre-emergence herbicide cinmethylin provided equal weed control efficacy as a combination of pre-emergence and post-emergence herbicides. The third article focused on the control of A. myosuroides including the combination of integrated stubble management and various application rates of the pre-emergence herbicide cinmethylin. In four field trials over a two-year period, the pre-emergence herbicide cinmethylin was applied at two application rates at two sites. Control success of up to 100 % was achieved through the combination of inversion tillage, false-seedbed preparation and the reduced rate of cinmethylin. The results also showed a high variation of the effect of preventive measures. The fourth article deals with IWM in spring oats and winter wheat. Field experiments were conducted at two locations over two years in five field trials. Chemical weed control was combined with sensor-based mechanical weed control. Data showed that sensor-based mechanical weed control (hoeing and harrowing) in the field trials achieved equal weed control efficacy of up to 100 %. However, highest grain yields were recorded for the combination of pre-emergence herbicide and post-emergence mechanical weed control. The last article dealt with a new cultivation system without chemical synthetic pesticides but with mineral fertilizers (MECS). The hypothesis was that MECS would increase the competitiveness of the crop on the weeds and generate higher yield benefit compared to the organic cultivation system. Field trials were conducted at four sites over two years. Three different cropping systems, an organic cropping system managed according to organic farming guidelines, a conventional cropping system and a MECS, were compared in a 5-year crop rotation. After two years of studies, no clear conclusion can be made how MECS affects the interaction of crops and weeds. Weed control efficacy in MECS was lower than organic farming. The increase in weed pressure in MECS will cause problems in the subsequent crops. Yields were significantly higher in MECS compared to the organic system and only slightly lower than in the conventional system. It can be concluded from these studies that IWM in combinations with precision farming technologies for mechanical weeding can replace herbicides. However, weed control costs were higher with non-chemical weed control methods.Publication Soil microorganisms as hidden miners of phosphorus in soils under different cover crop and tillage treatments(2022) Hallama, Moritz; Kandeler, EllenPhosphorus (P) is one of the most limiting plant nutrients for agricultural production. The soil microbial community plays a key role in nutrient cycling, affecting access of roots to P, as well as mobilization and mineralization of organic P (Porg). This thesis aimed to better understand the potential of cover crops to enhance plant-soil-microbe interactions to improve the availability of P. This dissertation consists of a meta-analysis of and two field experiments. The used methods showed that microbial P, the activity of P-cycling enzymes and PLFAs increased under cover crops, indicating an enhanced potential for organic P cycling. Gram- positive and Gram-negative bacteria, and to a lesser extent also arbuscular mycorrhizal fungi, increased their abundance with cover crops. However, saprotrophic fungi could benefit most from the substrate input derived from cover crop roots or litter. Enzyme-stable Porg shifted towards pools of a greater lability in the active soil compartments (rhizosheath and detritusphere). The effects of agricultural management, such as cover crop species choice and tillage, were detectable, but weaker compared to the effect of the presence of cover crops. With the obtained results, the research aims of this thesis could be successfully addressed. We were able to confirm that cover crops have the potential to improve main crops’ access to P. Furthermore, we presented and discussed three pathways of P benefit. In the plant biomass pathway, P is cycled through cover crop biomass and becomes available for the main crop upon litter decomposition. The microbial enhancement pathway describes how the cover crop’s interaction with soil microbes increases their abundance and activity, thereby increasing the availability of Porg. Some cover crop species seem to be capable of utilizing a biochemical modification pathway, where changes in the sorption capacity of the soil result in a greater quantity of plant-available phosphate. However, the latter pathway was apparently not important in the crop rotations used in our field experiments. The data also allowed us to characterize ways in which plant-soil-microbe interactions under cover crops affected the relationship of soil microbial functions to the enzymatic availability of Porg pools. Cover crops increased the abundance and activity of microbes, especially fungi, as well as microbial P. This enhancement in P-cycling potential shifted Porg toward pools of greater availability to added enzymes. However, the relation between enzymes and Porg pools is complex and is possibly affected by soil P composition and other site characteristics, indicating the need for further research in this area. Finally, we elucidated how the choice of cover crop species and agricultural management can shift the relative importance of the pathways for the P benefit of the main crop, while site-specific management allows farmers to adapt to local conditions and to optimize the functions of their agroecosystems. In conclusion, our results indicate that the pathways of cover crop derived P benefit take place simultaneously. We confirmed the potential of cover crop biomass for the cycling of P, and we suggest that our observed increases in the availability of soil Porg are related to microbial abundance and activity. The interactions of cover cropping and tillage indicate also that P benefit can be optimized by management decisions. Finally, these new insights into soil phosphorus cycling in agroecosystems have the potential to support further development of more sustainable agricultural systems.