Browsing by Subject "Gaeumannomyces graminis"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat(2022) Maywald, Niels Julian; Mang, Melissa; Pahls, Nathalie; Neumann, Günter; Ludewig, Uwe; Francioli, DavideNitrogen (N) fertilization is indispensable for high yields in agriculture due to its central role in plant growth and fitness. Different N forms affect plant defense against foliar pathogens and may alter soil–plant-microbe interactions. To date, however, the complex relationships between N forms and host defense are poorly understood. For this purpose, nitrate, ammonium, and cyanamide were compared in greenhouse pot trials with the aim to suppress two important fungal wheat pathogens Blumeria graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis f. sp. tritici (Ggt). Wheat inoculated with the foliar pathogen Bgt was comparatively up to 80% less infested when fertilized with nitrate or cyanamide than with ammonium. Likewise, soil inoculation with the fungal pathogen Ggt revealed a 38% higher percentage of take-all infected roots in ammonium-fertilized plants. The bacterial rhizosphere microbiome was little affected by the N form, whereas the fungal community composition and structure were shaped by the different N fertilization, as revealed from metabarcoding data. Importantly, we observed a higher abundance of fungal pathogenic taxa in the ammonium-fertilized treatment compared to the other N treatments. Taken together, our findings demonstrated the critical role of fertilized N forms for host–pathogen interactions and wheat rhizosphere microbiome assemblage, which are relevant for plant fitness and performance.Publication Bio-effectors for improved growth, nutrient acquisition and disease resistance of crops(2017) Weinmann, Markus; Neumann, GünterRecent scientific approaches to sustain agricultural production in face of a growing world food demand, limited natural resources, and ecological concerns have been focusing on biological processes to support soil fertility and healthy plant growth. In this context, the use of “bio-effectors”, comprising living (micro-) organisms and active natural compounds, has been receiving increasing attention. In contrast to conventional fertilizers and pesticides, the effectiveness of “bio-effectors” is essentially not based on the substantial direct input of mineral plant nutrients, neither in inorganic nor organic forms, nor of a-priori toxic compounds. Their direct or indirect effects on plant performance are rather based on the functional implementation or activation of biological mechanisms, in particular those interfering with soil-plant-microbe interactions. The general objective of the present research work was to improve the empirical and conceptual understanding concerning the utilization of bio-effectors in agricultural practice, following the principles of plant growth stimulation, bio-fertilization and bio-control. One main aspect of investigation was the application of bio-effectors to improve the efficiency of phosphorus (P) acquisition by the plant. Promising bio-preparations based on microbial inoculants (e.g. Bacillus, Pseudomonas, Trichoderma species) as well as natural compounds (e.g. algae extracts, humic acids) were tested in screening assays, greenhouse, and field experiments to characterize their potential effectiveness under varying environmental conditions. The most significant effects on plants appeared under severely low phosphate availability, but even under controlled conditions, bio-effectors required a narrow range of conductive environmental settings to reveal their potential effectiveness. Another focus of research was the application of bio-effectors to control soil borne pathogens, which typically appear in unsound crop rotations. Emphasis was set on take-all disease in wheat induced by the fungus Gaeumannomyces graminis. While the effectiveness of oat precrops to control take-all in subsequent wheat has been attributed to microbial changes and enhanced manganese (Mn) availability in soils, the take-all fungus is known to decrease the availability of Mn by oxidation. Against this background, the effectiveness of oat precrops and alternative crop management strategies to improve the Mn status and suppress the severity of take-all in wheat was investigated under controlled and field conditions. In conclusion, none of the tested supplemental treatments, such the application of microbial bio-effectors, stabilized ammonium or manganese fertilizers, could fully substitute for the multiple effectiveness of oat precrops, which was further confirmed by the results of a field experiment. Finally, some general conclusions and perspectives are summarized. Selected bio-effectors showed a strong capacity to improve the nutrient acquisition and healthy growth of crop plants under controlled conditions, but not in field experiments. However, even under controlled conditions the strongest effects occurred when plants were exposed to abiotic or biotic stresses, such as severely limited P availability or pathogen infestation of the soil substrate, still restricting plant growth to unproductive levels. Facing this situation, there is no perspective to improve the field efficiency of promising bio-effectors applications as a stand-alone approach. The only chance to develop viable alternatives to the conventional use of fertilizers or pesticides, for an ecological intensification of agriculture that maintains high yield levels, seems to be a reasonable integration of bio-effectors into the whole crop management of sound agricultural practice.Publication Bio-effectors for improved growth, nutrient acquisition and disease resistance of crops.- 2nd unrevised edition(2019) Weinmann, Markus; Madora GmbH, Luckestr.1, D-79539 Lörrach; Raupp, Manfred G.Recent scientific approaches to sustain agricultural production in face of a growing world food demand, limited natural resources, and ecological concerns have been focusing on biological processes to support soil fertility and healthy plant growth. In this context, the use of “bio-effectors”, comprising living (micro-) organisms and active natural compounds, has been receiving increasing attention. In contrast to conventional fertilizers and pesticides, the effectiveness of “bio-effectors” is essentially not based on the substantial direct input of mineral plant nutrients, neither in inorganic nor organic forms, nor of a-priori toxic compounds. Their direct or indirect effects on plant performance are rather based on the functional implementation or activation of biological mechanisms, in particular those interfering with soil-plant-microbe interactions. The general objective of the present research work was to improve the empirical and conceptual understanding concerning the utilization of bio-effectors in agricultural practice, following the principles of plant growth stimulation, bio-fertilization and bio-control. One main aspect of investigation was the application of bio-effectors to improve the efficiency of phosphorus (P) acquisition by the plant. Promising bio-preparations based on microbial inoculants (e.g. Bacillus, Pseudomonas, Trichoderma species) as well as natural compounds (e.g. algae extracts, humic acids) were tested in screening assays, greenhouse, and field experiments to characterize their potential effectiveness under varying environmental conditions. The most significant effects on plants appeared under severely low phosphate availability, but even under controlled conditions, bio-effectors required a narrow range of conductive environmental settings to reveal their potential effectiveness. Another focus of research was the application of bio-effectors to control soil borne pathogens, which typically appear in unsound crop rotations. Emphasis was set on take-all disease in wheat induced by the fungus Gaeumannomyces graminis. While the effectiveness of oat precrops to control take-all in subsequent wheat has been attributed to microbial changes and enhanced manganese (Mn) availability in soils, the take-all fungus is known to decrease the availability of Mn by oxidation. Against this background, the effectiveness of oat precrops and alternative crop management strategies to improve the Mn status and suppress the severity of take-all in wheat was investigated under controlled and field conditions. In conclusion, none of the tested supplemental treatments, such the application of microbial bio-effectors, stabilized ammonium or manganese fertilizers, could fully substitute for the multiple effectiveness of oat precrops, which was further confirmed by the results of a field experiment. Finally, some general conclusions and perspectives are summarized. Selected bio-effectors showed a strong capacity to improve the nutrient acquisition and healthy growth of crop plants under controlled conditions, but not in field experiments. However, even under controlled conditions the strongest effects occurred when plants were exposed to abiotic or biotic stresses, such as severely limited P availability or pathogen infestation of the soil substrate, still restricting plant growth to unproductive levels. Facing this situation, there is no perspective to improve the field efficiency of promising bio-effectors applications as a stand-alone approach. The only chance to develop viable alternatives to the conventional use of fertilizers or pesticides, for an ecological intensification of agriculture that maintains high yield levels, seems to be a reasonable integration of bio-effectors into the whole crop management of sound agricultural practice.