Browsing by Subject "Gastrulation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Delimitation of the organizer from the posterior notochord : descriptive and functional studies in mouse and African clawed frog(2009) Andre, Philipp; Blum, MartinDuring vertebrate development, gastrulation is probably the most important phase, as the future body plan is established. Thereby the three body axes anterior-posterior, dorsal-ventral and left-right are determined as well. A central role thereby is taken by the Spemann organizer, as this part of the embryo governs the above mentioned processes. The left-right axis is specified by an extracellular leftward fluid-flow, which results in asymmetric gene expression of the TGFβ factor Nodal. In mice the ciliated epithelium responsible for the fluid-flow as well as the organizer are denominated as ?node?. In contrast to that two distinct entities are thought to be responsible for organizer function and fluid-flow in zebrafish, Xenopus and rabbit embryos. In the present study, it could be shown that this also applies for mouse embryos. In order to prevent further confusion the ciliated epithelium responsible for the fluid-flow was denominated as posterior notochord (PNC) as it is in continuity with the notochord but located anterior to the organizer (?node?). The latter is characterized by the expression of the homeobox gene Goosecoid (Gsc). Gsc possesses, like the tissue of the organizer, the potential to induce an almost complete axis and became therefore famous as ?the organizer gene?. However upon knockout of Gsc in the mouse, surprisingly no gastrulation defects could be detected. Therefore the function of Gsc during gastrulation was investigated using a gain-of-function approach. The analysis of this, in the present and previous studies, indicated that Gsc acts as a switch between two modes of cell movement. Accordingly, Gsc promotes active cell migration and inhibits convergent extension movements. Furthermore it was investigated whether the monoamines adrenaline and serotonin have an influence on the cilia and thus on the leftward fluid-flow, as it was reported in rat and Xenopus experiments. Thereby it could be detected that the addition of adrenaline led to a reduction of the ciliary beat frequency (CBF) and therefore the fluid-flow was attenuated. In contrast to that the addition of serotonin or its antagonists resulted only in minor changes of CBF and thus had no measurable effect on the fluid-flow. The consequences of a malformed PNC were analyzed using embryos mutant for Brachyury (T). Thereby, it was shown that embryos homozygous for this mutation did not develop a functional PNC and thus lacked the fluid-flow. Furthermore a possible cause for the absence of asymmetric Nodal in these embryos was brought into context of an attenuated expression of Fgf8. This indicated that T possesses two distinct roles in left-right development. On the one hand it is necessary for the correct formation of a PNC and on the other hand it is probably needed to maintain the expression of Fgf8, which is a prerequisite for the transcription of Nodal. Finally it was investigated whether these functions were conserved from the African clawed frog Xenopus. Thereby, it could be shown, that Xbra, the homologous gene of T in Xenopus, was also necessary for the formation of the gastrocoel roof plate, the homologous structure of the PNC. Additionally it was observed that the absence of Xbra led to an attenuation of Nodal expression in the midline of Xenopus embryos. This implied that not only the function of Brachyury, but also the process of laterality determination is highly conserved between mammals and amphibians.Publication Goosecoid und Calponin : zwei neue Regulatoren des PCP-Signalwegs(2012) Ulmer, Bärbel Maria; Blum, MartinVertebrate embryogenesis relies on morphogenetic movements such as cell migration and convergent extension (CE). The planar cell polarity (PCP) branch of non-canonical Wnt signaling governs the orientation of cells along embryonic axes. PCP-signaling leads to intracellular polarization of proteins such as Dishevelled, Prickle and Vangl2, resulting in activation of small GTPases such as Rho and Rac, and consequently oriented alignment of the cytoskeleton. This polarity is required for CE, namely for the intercalation of bipolar cells, during gastrulation and neurulation. CE promotes elongation of the notochord and the neural plate, which is a prerequisite of neural tube closure. Previous work had shown that misexpression of the transcription factor Goosecoid (Gsc) in the primitive streak of the mouse and in the dorsal marginal zone of the frog led to neural tube closure defects. The present work demonstrates that misexpression of Gsc inhibits CE in vivo and ex vivo. Gsc gain-of-function (Gsc-GOF) prevented the membrane localization of Dishevelled in the frog animal cap assay, suggesting a disturbance of the PCP pathway. The Gsc-induced phenotypes could be rescued by co-injection of core components of the PCP pathway, Vangl2 and Prickle. Overexpression of RhoA and the non-canonical Wnt11, rescued the effect of Gsc-GOF. Brachyury, a transcriptional activator of Wnt11 and known target of Gsc, was also able to rescue the effect of Gsc-GOF. Gsc thus acted as a repressor of PCP-mediated CE. Furthermore, loss of function experiments in Xenopus were conducted to reveal the endogenous function of Gsc. Due to the conserved and distinct expression of Gsc in Spemann's organizer and the induction of double axes upon injection of Gsc into the ventral marginal zone in Xenopus, a function of Gsc in the specification of dorsal tissue was predicted. The lack of gastrulation defects in the Gsc knock-out mouse, however, questioned an early role of Gsc. The repression of the PCP pathway by Gsc-GOF suggested a novel role of Gsc in the regulation of cell movements. Interestingly, Gsc is expressed in a distinct population of cells in the early organizer, which migrate out of the organizer during early gastrulation to form the prechordal mesoderm. In contrast, the subsequent involuting cells of the notochord undergo CE. Gsc knock-down in the frog reduced the prechordal plate resulting in a narrowing of eye distance. Furthermore, activin-induced CE in animal cap explants was enhanced by Gsc loss-of-function. These findings are consistent with a novel function of the organizer gene Gsc in the regulation of cell movements during early gastrulation, namely the repression of PCP-mediated CE as a prerequisite of active migration of the prechordal mesoderm. The directed migration of neural crest cells represents another embryological process which depends on PCP-signaling. Previous work showed expression of Calponin2 in neural crest cells. Moreover, inhibition of Calponin1 by the Rho-Kinase has been described. In Xenopus, Calponin2 localized to cell protrusion of delaminating and migrating neural crest cells. Loss of function of Calponin2 prevented the polarized outgrowth of cell extensions in neural crest explants and thus migration of neural crest cells. Moreover, additional stress fibers were formed in the central area of neural crest cells at the expense of the peripheral, cortical actin cytoskeleton. The PCP pathway directs migration via the activation of RhoA and inhibition of Rac in the cell compartment opposed to the leading edge. This suggested an interaction of PCP-signaling and Calponin2 during the migration of neural crest cells, which was examined by rescue experiments in vivo and in neural crest explants. Calponin2 knock-down rescued Wnt11 and Rho-Kinase loss-of-function, strongly suggesting that the actin-binding protein Calponin2 acts as an effector of the PCP pathway and directs the polarization of the actin cytoskeleton in migrating neural crest cells. In summary the present work involved two novel regulators of PCP-mediated CE, Gsc at the transcriptional level and Calponin2 as an effector of the actin cytoskeleton.