Browsing by Subject "Genomic analyses"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Analysis of phosphorus utilization using the host genome and microbiota variability in Japanese quail(2021) Vollmar, Solveig Deniece; Bennewitz, JörnPhosphorus (P) is an essential element for growth and performance of avian species. It is predominantly bound as phytic acids and salts (phytate) in plant seeds. Phytases and other phosphatases can harness P by cleaving P groups. Nonruminants have low endogenous phytase activity in the gastrointestinal tract, and thus, the requirement of this element is not met from exclusive plant-based diets. Therefore, mineral P or phytase enzymes are supplemented in poultry feed. Due to the finite quantities of high quality mineral P worldwide, it is of great economic interest. P supplementation is increasingly causing environmental problems. Past studies investigated the P utilization (PU) of different poultry species. They revealed a high phenotypic variation in PU among individuals. Moderate heritabilities indicates that breeding for this trait is in principle possible. The overall aim of this thesis was to gain a deeper understanding of the variability of P utilization in relation to host genetics, ileal microbiota composition and their interaction in the model species Japanese quail. The objective of chapter two was to verify whether variation in PU in quail is a heritable trait conditioned by a few quantitative trait loci (QTL) with detectable effects. For this purpose, individuals were genome-wide genotyped with a 4k SNP chip, and a linkage map was generated. Based on this map, QTL linkage analysis was performed using multimarker regression analysis in a line-crossing model to map QTL for PU. We identified a few QTL regions with significant effects. Among them was a QTL peak at Coturnix japonica chromosome (CJA) 3 for PU. Several genes were found in the region surrounding this peak, which requires further functional gene analysis. Based on these results, we hypothesized that these traits are polygenically determined due to several small QTL effects, which we could not detect significantly. The overlap of the QTL regions indicated linkage of the traits and confirmed their genetic correlations. With the aim of predicting microbiota-related host traits, chapter three examined the composition of the ileum microbiota and differential abundance analysis (DAA). Based on this study, it was shown that a sex-specific influence on microbiota composition exists. The digesta samples of all animals were dominated by five genera, which contributed to more than 70% of the total ileum microbial community. In examining the microbiota composition of each of the 50 animals with the highest and lowest PU, DAA revealed genera significantly associated with PU. In chapter four, we characterized the influence of performance-related gut microbiota to unravel the microbial architecture of the traits evaluated. The aim of this study was to determine whether the variation in PU is partly driven by the microbial community in the ileum. We used microbial mixed linear models to estimate microbiabilities (m^2). This determines the fraction of phenotypic variance that can be explained by the gut microbiota. The estimation of m^2 was 0.15 for PU and was highly significant. It was also highly significant for feed intake, body weight gain and feed per gain. This model was bivariately extended and showed a high microbial correlation of the traits. Based on both results, the ileum microbiota composition plays a substantial role in PU as well as in performance traits, and there is a considerable animal microbiota correlation, showing that the microbiota affects multiple traits. The microbial drivers of this microbial fraction were identified by applying microbiome-wide association studies (MWAS). By back-solving the microbial linear mixed model, we approximated the effect of single OTUs on the phenotypic traits from the microbial model solutions. An MWAS at the genus level uncovered several traits associated with bacterial genera. Subsequently, we assessed whether the microbial community in the ileum is a heritable host trait that can be used for breeding individuals with improved PU. In chapter five we applied QTL analysis using specific genera to examine whether they are linked with genomic SNP markers. These QTL analyses revealed a link between some microbiota species and host genomic regions of chromosomes and SNP markers. By estimating significant heritabilities for some genera, we were able to provide evidence for the hypothesis that the microbial community and microbial features are at least partially related to host genetics. We predicted the animal microbial effects on PU and correlated performance traits by applying microbial best linear unbiased predictions (M-BLUP). In addition, genomic best linear unbiased predictions (G-BLUP) were used to predict the SNP effect for the predicted animal microbial effect. A combination of those two may help to predict genomic breeding values of the microbiota effects for future hologenomic breeding programs.Publication Genomic analyses of behavior traits in laying hen lines divergently selected for feather pecking(2021) Iffland, Hanna; Bennewitz, JörnFeather pecking is a longstanding problem in commercial layer flocks. It often causes injured birds and even cannibalism. In the past, hens were beak trimmed to reduce feather pecking. Nevertheless, this procedure is already prohibited in some EU countries. Hence, a solution to this problem is urgently needed. The experimental populations analyzed in this thesis were formed by hens based on a White Leghorn layer strain which were divergently selected for high and low feather pecking since 1995. The first experimental population of this thesis was an F2 cross of about 900 hens which was established of the 10th generation of the pure selection lines. The second population consisted of about 500 hens of the 15th generation of these two lines. The aim of this thesis was to gain further knowledge of the genetic background of feather pecking and its relation to additional behavior traits and the gut microbiome. In chapter one, a novel model to detect extreme feather pecking hens was developed. Therefore, a mixture of two negative binomial distributions was fitted to feather pecking data of the F2 cross. With the estimated parameters, the trait posterior probability of a hen to belong to the extreme feather pecking subgroup (pEFP) was calculated. The fear tests tonic immobility and emerge box were conducted at juvenile and adult age of the hens to relate fearfulness to pEFP. After dichotomization, all traits were analyzed in a multivariate threshold model and subsequent genomewide association studies (GWAS) were performed. The fit revealed that extreme feather peckers made up a proportion of about one third of the hens. The new trait pEFP has a medium heritability of 0.35 and is positively correlated with the fear traits. Breeding for this new trait could be an option to reduce the proportion of extreme feather peckers. An index of fear related traits might serve as a proxy to breed indirectly against pEFP. In chapter two, the model to detect extreme feather pecking hens was applied to the pure selection lines. After calculation of the trait pEFP, GWAS with a subsequent post GWAS analysis were performed. Additionally, to find genomic regions influencing feather pecking, selection signatures were mapped by applying the intra-population iHS and the inter-population FST approach. Mapping of selection signatures revealed no clear regions under selection. GWAS revealed a region on chromosome one, where the existence of a quantitative trait locus (QTL) influencing feather pecking is likely. The candidate genes found in this region are a part of the GABAergic system. Despite the polygenic nature of feather pecking, selection on these candidate genes may reduce the extreme occurrence of it. In chapter three, the relation between agonistic behavior and feather pecking was analyzed. Therefore, the active parts of the traits (delivery of feather pecking, aggressive pecking or threatening) as well as the passive parts (reception of the traits) were considered. These groups of traits were additionally summarized by means of an index formation which led to the two additional traits Activity and Passivity, because all these behaviors are undesired in their excessive manifestations. Moreover, Indices were built by subtracting the passive traits from the respective active traits to obtain the feather pecking index, the aggression index and the threat index. Phenotypic correlations were estimated between all traits which were followed by heritability estimations and GWAS. Feather pecking is significantly positively correlated with the agonistic traits in both lines. The active traits and the feather pecking index show medium heritabilities. Hence, selection on high feather pecking leads to an increase of agonistic behavior whereas the correlation probably depends on the phase of establishing the social hierarchy and might disappear, after a stable ranking is established. GWAS revealed that the heritable traits in this study seem to be typical quantitative traits. Chapter four provides the analyses of the gut microbial composition of the two feather pecking lines, followed by the estimation of microbiabilities for feather pecking and the two agonistic behavior traits, to study the influence of the gut microbiome on behavior. Microbiota samples from digesta and mucosa were taken from ileum and caecum. The microbial communities were determined by using 16S RNA gene sequencing techniques. Although both lines differ significantly in some fractions of their gut microbial composition, the microbial animal effects were mostly negligibly small. Thus, the calculated microbiabilities were close to zero and not significant in both lines and for all traits investigated. Hence, trait variations were not affected by the gut microbial composition in both feather pecking lines. The thesis ends with a general discussion where additional results of a meta-analysis of pEFP and breeding strategies against feather pecking are considered.Publication Genomic and microbial analyses of quantitative traits in poultry(2023) Haas, Valentin Peter; Bennewitz, JörnFeed and nutrient efficiency will become increasingly important in poultry production in the coming years. In addition to feed efficiency, particular attention is paid to phosphorus (P) in nonruminants. Especially growing animals have a high demand of P but through the low usability of plant-based P sources for nonruminants, mineral P is added to their feeds. Due to worldwide limited mineral P sources, the high environmental impact of P in excretions and high supplementation costs, a better utilization of P from feed components is required. Animals’ P utilization (PU) is known to be influenced by the host genetics and by gastrointestinal microbiota. The overall aim of this thesis was to investigate the relationships between host genetics, gastrointestinal microbiota composition and quantitative traits with the focus on PU and related traits in F2 cross Japanese quail (Coturnix japonica). Japanese quail represent a model species for agriculturally important poultry species. In Chapter one, a genetic linkage map for 4k genome-wide distributed SNPs in the study design was constructed and quantitative trait loci (QTL) linkage mapping for performance as well as bone ash traits using a multi-marker regression approach was conducted. Several genome-wide significant QTL were mapped, and subsequent single marker association analyses were performed to find trait associated marker within the significant QTL regions. The analyses revealed a polygenic nature of the traits with few significant QTL and many undetectable QTL. Some overlapping QTL regions for different traits were found, which agreed with the genetic correlations between the traits. Potential candidate genes within the discovered QTL regions were identified and discussed. Chapter two provided a new perspective on utilization and efficiency traits by incorporating gastrointestinal microbiota and investigated the links between host genetics, gastrointestinal microbiota and quantitative traits. We demonstrated the host genetic influences on parts of the microbial colonization localized in the ileum by estimating heritabilities and mapping QTL regions. From 59 bacterial genera, 24 showed a significant heritability and six genome-wide significant QTL were found. Structural equation models (SEM) were applied to determine causal relationships between the heritable part of the microbiota and efficiency traits. Furthermore, accuracies of different microbial and genomic trait predictions were compared and a hologenomic selection approach was investigated based on the host genome and the heritable part of the ileum microbiota composition. This chapter confirmed the indirect influence of host genetics via the microbiota composition on the quantitative traits. Chapter three further extended the approaches to identify causalities from chapter two. Bayesian learning algorithms were used to discover causal networks. In this approach, microbial diversity was considered as an additional quantitative trait and analyzed jointly with the efficiency traits in order to model and identify their directional relationships. The detected directional relationships were confirmed using SEM and extended to SEM association analyses to separate total SNP effects on a trait into direct or indirect SNP effects mediated by upstream traits. This chapter showed that up to one half of the total SNP effects on a trait are composed of indirect SNP effects via mediating traits. A method for detecting causal relationships between microbial and efficiency traits was established, allowing separation of direct and indirect SNP effects. Chapter four includes an invited review on the major genetic-statistical studies involving the gut microbiota information of nonruminants. The review discussed the analyses conducted in chapter one to three and places the analyses published in these chapters in the context of other statistical approaches. Chapter four completed the microbial genetic approaches published to date and discussed the potential use of microbial information in poultry and pig breeding. The general discussion includes further results not presented in any of the chapters and discusses the general findings across the chapters.Publication Quantitativ-genetische und genomische Analysen zu den Merkmalen perinataler Saugreflex und Trinkverhalten bei Kälbern der Rasse Braunvieh(2020) Dreher, Clarissa Susanne; Bennewitz, JörnA healthy sucking behavior is important for newborn calves to ensure sufficient colostrum intake in the first few hours postpartum. This is essential for the passive immunization of newborn calves and provides the foundation for raising vital and well developed animals. Insufficient colostrum intake not only results in developmental disorders and increased susceptibility to certain diseases, but also inherits the risk of increased postnatal mortality. Therefore, an insufficient colostrum intake is an animal welfare problem and it also leads to economic losses for the farmers. Brown Swiss breeders are more likely to experience the problem of non-sucking calves (incidence: 10%) than is apparent in other breeds. Studies in the Italian Brown Swiss population have already identified a genetic component with mid-range heritabilities for erroneous perinatal sucking behavior. This indicates that the trait sucking behavior is partly influenced by the genes of the animals and thus breeding for this trait might lead to a selection response. Therefore, the characterization of the genetic background of perinatal sucking reflex and sucking behavior in neonatal calves in the Brown Swiss population was carried out in this work. For this purpose, data were collected on more than 220 dairy cattle farms located in Baden-Württemberg. In addition to an evaluation of the husbandry and feeding management of the farms, the phenotype data of more than 10,000 calves were collected to carry out pedigree-based genetic analyzes using univariate and multivariate sire threshold models. In addition, the collection of tissue samples from over 3,000 calves was carried out for the performance of genomic analyzes. Using high-density marker maps, genome-wide association mapping was performed using both single-marker models and Bayesian multi-marker models. Tissue samples of approximately 900 mothers were also collected and their 50K-genotypes were analyzed. Based on the maternal marker genotypes, maternal genetic effects on an erroneous sucking reflex of the calves were investigated. Low heritabilities for the traits sucking behavior and sucking reflex could be determined. These ranged from 0.06 to 0.23, depending on the trait, the trait coding used and the models used. The heritability estimates for sucking behavior were slightly higher in the univariate model as well as in the multivariate model than for sucking reflex. The GWAS results clearly showed a quantitative-genetic background of both traits. From these findings, it can be deduced for practical breeding strategies that improving the problem by means of genetic tests, as is the case, for example, with monogenic hereditary diseases, would not be expedient. Instead, breeding progress through the use of genomic selection is recommended. A constant trait recording is required for this purpose. The sucking behavior of the calves should be recorded within the first 12 hours postpartum. The results of gene annotation using GO terms and pathway analysis revealed the overrepresentation of genes with functions in the development of the central nervous system, neurogenesis, and signal transduction. In order to effectively estimate maternal genetic effects on calf sucking weakness, both the marker density of 50K was too low and the data set too small. A highly significant farm effect on the investigated traits was found. However, the evaluations carried out with regard to specific influences of the housing and feeding environments on farms did not show any significant differences.