Browsing by Subject "Greenhouse gases"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Biochar amendment for C sequestration in a temperate agroecosystem : implications for microbial C- and N-cycling(2018) Bamminger, Chris; Kandeler, EllenClimate warming will have great impact on terrestrial ecosystems. Different soil properties such as temperature and moisture will be altered, thereby influencing C- and N-cycles, microbial activity as well as plant growth. This may contribute to the observed increase in soil greenhouse gas (GHG) emissions under climate change. Therefore, new options are needed to mitigate theses projected consequences. Biochar is primarily suggested to be effective in long-term C sequestration in agricultural soils due to its long-term stability. In addition, it could be applied to improve various soil properties, plant growth and to reduce soil GHG emissions. To date, knowledge about such beneficial biochar effects in soil under predicted warming climate is extremely scarce. In the first study, a slow-pyrolysis biochar from Miscanthus x giganteus feedstock (600 °C, 30 Min.) was incubated for short time (37d) under controlled laboratory conditions in agricultural soil in the presence of earthworms and N-rich litter (Phacelia tanacetifolia Benth.). Biochar increased microbial abundances and the fungal-to-bacterial PLFA ratio after 37 days in arable soil applied with litter suggesting improved living conditions for microorganisms with biochar. Fungi may benefit most from newly created habitats due to colonizable biochar pores and surfaces. Additionally, fungi could have also mineralized small amounts of recalcitrant biochar-C during plant litter decomposition. Without litter, biochar led to interactions between earthworms and soil microorganisms resulting in enhanced bacterial and fungal abundances. This indicates better growth habitats for soil microbes in earthworm casts containing biochar. Soil respiration and metabolic quotients (qCO2) and N2O emissions (in litter treatments) were decreased after biochar application suggesting a more efficient microbial community and underscoring the GHG mitigation potential of the used biochar. The field experiment, investigated in the second and third study, focused on the stability and long-term soil C sequestration potential of comparable Miscanthus biochar (850 °C, 30 Min.). Related effects on soil GHG emissions, physical, chemical and microbiological soil properties as well as plant growth were determined in an agroecosystem at year-round elevated soil temperature (+2.5 °C, since 2008). The second study investigated the short-term effects of biochar on microbial abundances and growth of winter rapeseed during the first year after field application to a warmed temperate arable soil. It was found that fungal biomass and the fungal-to-bacterial ratio were increased in the warmed biochar plots only after three months in the presence of spring barley litter from the previous growing season. The disappearance of this effect points to an overall high stability of the investigated biochar. Moreover, biochar proved to be effective in mitigating negative effects of seasonal dryness on microbial abundances and early plant growth in the dry spring period in 2014. However, biochar had no effect on final aboveground biomass of winter rapeseed at harvest in the first growing season. As shown in the third study, after two vegetation periods of winter rapeseed and spring wheat, the assumption that plant productivity in already fertile temperate arable soils is unlikely to be further enhanced with biochar amendment, was confirmed. Total CO2 emissions after two years were not reduced by biochar and remained unchanged even under warming suggesting a high degradation stability of the used biochar. N2O emissions were increased in biochar-amended soil at elevated soil temperature, presumably due to enhanced water and fertilizer retention with biochar. By using the global warming potential (GWP100) of total soil GHG emissions, the storage of biochar-C in soil was estimated to compensate warming-induced elevated soil GHG emissions for 20 years. To conclude, this thesis revealed that biochar may have only minor influence on soil microorganisms and crop growth in temperate, fertile arable field soils. However, it was shown that biochar could be a valuable tool for C sequestration in temperate arable soils, thus potentially offsetting a warming-induced increase in GHG emissions. In order to face climate change impacts, more long-term studies on microbiological effects and the C sequestration potential of biochar in cultivated soil under warming are urgently needed.Publication Emission von Ammoniak (NH₃) und Lachgas (N₂O) von landwirtschaftlich genutzten Böden in Abhängigkeit von produktionstechnischen Maßnahmen(2003) Leick, Barbara Cornelia Elisabeth; Engels, ChristofThe goal of this research was to quantify event-based NH₃ and N₂O emissions in various farming systems and to propose emission-avoidance strategies. Emission measurements were made on pasture land (Allgaeu, Hohenheim) and on cultivated fields (Hohenheim, Biberach). These measurements were made after applying organic and mineral fertilizers, after incorporating crop residues, and after freeze / thaw cycles; furthermore, experiments were conducted using container plants of different species (leguminous, and non-leguminous) and different fertilizers. NH3 emissions data was gathered under field conditions using the wind tunnel method and the IHF method (Integrated Horizontal Flux). In the container experiments, data was gathered by taking photo-acoustic measurements. N₂O emissions data was compiled using closed chambers (Hohenheim measuring chambers) and using an open-chamber system in which an exchange occurred between the air in the chambers and the ambient air. N₂O levels were determined using a gas chromatograph or by photo-acoustic measurements. The NH₃ emissions after applying liquid manure to pasture land varied between 11 and 40% of the total nitrogen applied. Emission levels of less than 20% occurred when it rained shortly after spreading liquid manure causing it to be washed into the soil. The application technique (splash plate, surface banding and liquid manure injection) had no apparent influence on NH₃ emissions under these conditions. The N₂O emissions after liquid manure fertilization on pasture land in Hohenheim were 0.16% of the total NH4+-N. In comparison, the emissions in the Allgäu were between 1.7 and 2.3% of the total NH4+-N applied. Liquid manure injection led to higher emissions as did application using a splash plate. In the Allgäu, the N₂O emissions after mineral-nitrogen fertilization were markedly lower (0.3 to 0.8% of applied N) than after liquid manure application. In Hohenheim, the nitrogen form had no distinct influence on the emissions (<0.16% of applied N). Definitive differences between the two locations were observed during the experiments. These differences were based on N₂O losses due to the respective soil and weather conditions (precipitation, temperature). The higher emissions after applying liquid manure compared to those after applying mineral nitrogen fertilizer are explainable in that aside from the nitrogen compounds found in liquid manure, carbon compounds which promote the microbial formation of N₂O were also entering the soil. The NH3 emissions after liquid manure fertilization on cultivated fields using a splash plate varied between 25 and 35% of the applied NH4+-N. By using a slurry cultivator which combines application with immediate incorporation, the NH3 emissions can be clearly reduced to 6% of the applied NH4+-N. Application with a drag hose, in comparison to using a splash plate, did not always result in an emission reduction; however, in taller plants, a readable emission reduction was measured. The N₂O emissions after liquid manure application on cultivated fields varied between 0.1 and 2.2% of the applied NH4+-N whereby the emissions after guided application with the drag hose were always higher than after using a splash plate. Mineral fertilizer had lower N2O emissions (<0.13% of applied N), especially when ammonium fertilizer was brought out in combination with a nitrification inhibitor. The incorporation of green manure crops notedly increased N₂O emissions. N₂O emission after the incorporation of legumes was especially high. In the container experiments, a diurnal rhythm of the N₂O and NH₃ flows in growing rape and vetch was observed. This indicated a stomatal flow of these gaseous nitrogen forms. N₂O emissions also occurred outside of the vegetation period at temperatures between 0 and 5°C, with the N₂O emissions from the nitrogen fertilized parcels being greater than the emissions from the unfertilized parcels. In container experiments, the N₂O emissions after freeze / thaw cycles were greater from white clover than from perennial rye grass. In fallow soil columns, the N₂O emissions after freeze / thaw cycles were especially high if the content of nitrate and water-soluble organic carbon in the soil was large. The results of this research show that the emission of nitrogen-containing compounds after organic and inorganic fertilization can be reduced through application methods (immediate incorporation), appropriate fertilization technology (addition of nitrification inhibitors), but also through fertilizer application under favourable weather conditions to include seasonal and volume adjustment of the fertilizer based on the growth requirements of the plants. Because high N₂O emissions can also occur at low temperatures, cultivation practices that influence the availability of mineral nitrogen and easily degradable organic substances in the soil during cold weather have a large impact on the N₂O emissions from agricultural land.Publication The role of Phragmites australis in carbon, water and energy fluxes from a fen in southwest Germany(2019) van den Berg, Merit; Streck, ThiloThe global carbon emission from peat soils adds up to 0.1 Gt-C per year. Under anaerobic conditions, organic material is decomposed to methane (CH4). Over a 100-year cycle, methane is a 28 times stronger greenhouse gas than carbon dioxide and is an important factor for climate change. Therefore, there is a great interest to get a better understanding of the carbon flows in peatlands. Phragmites peatlands are particularly interesting due to the global abundance of this wetland plant (Phragmites australis, common reed) and the highly efficient internal gas transport mechanism. This is a humidity-induced convective flow (HIC) to transport oxygen (O2) to the roots and rhizomes, with the effect that simultaneously soil gases (CH4 and CO2) can be transported to the atmosphere via the plant. Thereby, Phragmites is expected to have a high evapotranspiration (ET) rate due to the large leaf area, open water habitat and high aerodynamic roughness. This ET could highly influence the hydrology of the system. Because he accumulation of organic material occurs because of limiting oxygen levels, hydrological processes are fundamental in the development of peatlands. The research aims were: 1) to clarify the effect of plant-mediated gas transport on CH4 emission, 2) to find out whether Phragmites peatlands are a net source or sink of greenhouse gases, and 3) to evaluate ET in perspective of surface energy partitioning and compare results with FAO’s Penman-Monteith equation. CO2, CH4 and latent and sensible energy fluxes were measured with the eddy covariance (EC) technique within a Phragmites-dominated fen in southwest Germany in 2013, 2014 and 2016. In 2016, a field experiment was set up to quantify the contribution of plant-mediated CH4 transport to the overall CH4 flux and how it influences ebullition. One year of EC flux data (March 2013–February 2014) shows very clear diurnal and seasonal patterns for both CO2 and CH4. The diurnal pattern of CH4 fluxes was only visible when living green reed was present. This diurnal cycle had the highest correlation with global radiation, which suggests a high influence of HIC on CH4 emission. But if the cause were HIC, relative humidity should correlate stronger with CH4 flux. Therefore, we conclude that in addition to HIC at least one other mechanism must have been involved in the creation of the convective flow within the Phragmites plants. We quantified the influence of pressurized flow within Phragmites on total CH4 emission in a field experiment (see chapter 3) and found between 23% and 45% lower total CH4 flux when pressurized flow was excluded (by cutting or cutting and sealing the reed). The gas transport pathways from the soil to the atmosphere changed as well. Relative contribution of ebullition to the total flux increased from 2% in intact Phragmites to 24-37% in cut vegetation. This increase in ebullition in cut vegetation, obviously, did not compensate the excluded pathway via the pressurized air flow at our site. It also means that the effect of CH4 bypassing the oxic water layer by plant transport on CH4 emission is much larger than the effect of O2 transport through the plants on CH4 oxidation and production in the rhizosphere. Overall, the fen was a sink for carbon and greenhouse gases in the measured year, with a total carbon uptake of 221 g C m-2 yr-1 (26% of the total assimilated carbon). The net uptake of greenhouse gases was 52 g CO2 eq.m-2 yr-1, which is obtained from an uptake of CO2 of 894 g CO2 m-2 yr-1 and a release of CH4 of 842 g CO2 eq.m-2 yr-1. Compared to the long term uptake of carbon by northern peatlands (20–50 g C m-2 yr-1) 212 g C yr-1 is therefore very high. One year of measurements is not enough to draw hard conclusions about the climate change impact of this peatland. The measured ET at our site was lower than other Phragmites wetlands in temperate regions. ET was half the amount of precipitation (see chapter 4). Therefore, the risk of the wetland to dry out is not realistic. ET was especially low when there was little plant activity (May and October). Then, the dominant turbulent energy flux was sensible heat not latent heat. This can be explained by the high density of dead reed in these months. the reed heats up causing a high sensible heat flux. Evaporation was low due to the shading of the water layer below the canopy and low wind velocities near the surface. FAO’s Penman-Monteith equation was a good estimator of measured ET with crop factors from the regression model of Zhou and Zhou (2009) (see chapter 4). Especially the day-to-day variation was modeled very well. Their model had air temperature, relative humidity and net radiation as input variables. This is likely related to stomatal resistance, which depends on the same variables. Therefore, the model of Zhou and Zhou (2009) is an interesting tool for calculating daily crop factors and it is probably robust enough to be used also in different regions.Publication Varietal effects on methane intensity of paddy fields under different irrigation management(2023) Vo, Thi Bach Thuong; Johnson, Kristian; Wassmann, Reiner; Sander, Bjoern Ole; Asch, FolkardAlternate wetting and drying irrigation (AWD) has been shown to decrease water use and trace gas emissions from paddy fields. Whereas genotypic water use shows little variation, it has been shown that rice varieties differ in the magnitude of their methane emissions. Management and variety‐related emission factors have been proposed for modelling the impact of paddy production on climate change; however, the magnitude of a potential reduction in greenhouse gas emissions by changing varieties has not yet been fully assessed. AWD has been shown to affect genotypic yields and high‐yielding varieties suffer the greatest loss when grown under AWD. The highest yielding varieties may not have the highest methane emissions; thus, a potential yield loss could be compensated by a larger reduction in methane emissions. However, AWD can only be implemented under full control of irrigation water, leaving the rainy seasons with little scope to reduce methane emissions from paddy fields. Employing low‐emitting varieties during the rainy season may be an option to reduce methane emissions but may compromise farmers’ income if such varieties perform less well than the current standard. Methane emissions and rice yields were determined in field trials over two consecutive winter/spring seasons with continuously flooded and AWD irrigation treatments for 20 lowland rice varieties in the Mekong Delta of Vietnam. Based on the results, this paper investigates the magnitude of methane savings through varietal choice for both AWD and continuous flooding in relation to genotypic yields and explores potential options for compensating farmers’ mitigation efforts.